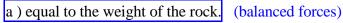
ANSWER 15 MULTIPLE CHOICE QUESTIONS ON THE BUBBLE SHEET


<u>Hooke's law</u>: F=kx; <u>Weight</u>: $W=F_G=mg$, g=9.81N/kg (on Earth), <u>Torque</u> (**F r**): $\neq r$;

<u>Work</u>: $w = \langle \mathbf{F} \rangle$ s; <u>Potential Energy</u>: $PE_S = \frac{1}{2}kx^2$ (spring), $PE_G = mgh$ (gravity on Earth);

<u>Kinetic Energy</u>: $KE = \frac{1}{2}mv^2$; <u>Energy Conservation</u>: $KE + PE = KE_0 + PE_0 + w_{NCF}$;

<u>Momentum</u>: $\mathbf{p} = m\mathbf{v}$; 2^{nd} law (**F** const.): $\mathbf{p} = \mathbf{p}_0 + \mathbf{F}t$; No $F_{external}$: Sum(\mathbf{p}) = Sum(\mathbf{p}_0)

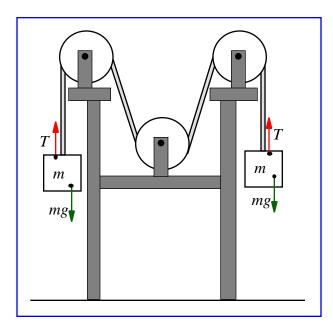
- 1. Which action below is due primarily to the weak nuclear force?
 - a) Killing cancer cells with X-ray photons.
 - b) Fusing of a proton and neutron to form a deuterium nucleus.
 - c) Orbiting of the sun around the center of our galaxy.
 - d) Interaction of a neutrino in matter. (neutrino!)
 - e) None of the above.
- 2. At a *constant speed*, *v*, a person raises a rock by an attached string. During the motion, the magnitude of the tension force acting on the rock is

- b) pointing downward.
- c) greater than the weight of the rock.
- d) less than the weight of the rock.
- e) zero.
- 3. Which statement is true: the forces comprising an *Internal* force pair,

- a) can't be conservative forces.
- b) must be conservative forces.
- c) include one conservative and one non-conservative force.
- d) can be an action reaction pair of forces. (must be an action reaction pair)
- e) must have the same magnitude and direction.
- 4. Why does a person feel weightless in an orbit 100 miles above the earth?
 - a) There is no Gravity 100 miles above the earth.
 - b) The motion parallel to the earth's surface cancels Gravity.
 - c) There is no air pressure to keep you down.
 - d) Gravity is balanced by another force on the person.
 - e) The only force acting on the person is Gravity. (Gravity alone cannot be felt)
- 5. Consider the speed of a mass, and forces acting on it. Which condition **CANNOT** exist:
 - a) speed equal to zero, and <u>un</u>balanced forces. (Where an object changes direction!)
 - b) speed equal to zero, and balanced forces.
 - c) speed <u>not</u> equal to zero, and <u>un</u>balanced forces.
 - d) speed not equal to zero, and balanced forces.
 - e) none of the above.

Hooke's law: F=kx; Weight: $W=F_G=mg$, g=9.81N/kg (on Earth), Torque (**F r**): $\neq Fr$;

Work: $w = \langle \mathbf{F} \rangle$ s; Potential Energy: $PE_S = \frac{1}{2}kx^2$ (spring), $PE_G = mgh$ (gravity on Earth);


<u>Kinetic Energy</u>: $KE = \frac{1}{2}mv^2$; <u>Energy Conservation</u>: $KE + PE = KE_0 + PE_0 + w_{NCF}$;

<u>Momentum</u>: $\mathbf{p} = m\mathbf{v}$; $\frac{2^{\text{nd}} \text{ law } (\mathbf{F} \text{ const.})}{\mathbf{p} = \mathbf{p}_0 + \mathbf{F}t}$; No $F_{external}$: Sum(\mathbf{p}) = Sum(\mathbf{p}_0)

6. A mass, m = 10 kg, starts at rest. Without air friction, after falling a distance of 1000m, the mass has what kinetic energy?

- a) $10^2 \, J$
- b) $10^3 \, J$
- c) $10^4 \, J$
- $d) 10^5 J$
- e) 10⁶ J

$$KE + PE = KE_0 + PE_0$$

 $KE + 0 = 0 + mgh = (10\text{kg})(10\text{N/kg})(1000\text{m})$
 $= 10^5 \text{ J}$

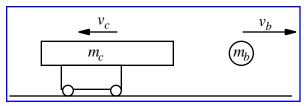
7. Equal masses are connected by a light string, and suspended by mass-less pulleys, as shown above. What is the tension in the string?

a) mg (tension in rope balances the weight of a mass)

- b) 2*mg*
- c) zero
- d) 2mg/3
- e) 1.5 mg

<u>Hooke's law</u>: F=kx; <u>Weight</u>: $W=F_G=mg$, g=9.81N/kg (on Earth), <u>Torque</u> (**F r**): $\neq Fr$;

<u>Work</u>: $w = \langle \mathbf{F} \rangle$ s; <u>Potential Energy</u>: $PE_S = \frac{1}{2}kx^2$ (spring), $PE_G = mgh$ (gravity on Earth);


Kinetic Energy: $KE = \frac{1}{2}mv^2$; Energy Conservation: $KE + PE = KE_0 + PE_0 + w_{NCF}$; Momentum: $\mathbf{p} = m\mathbf{v}$; 2^{nd} law (\mathbf{F} const.): $\mathbf{p} = \mathbf{p}_0 + \mathbf{F}t$; No $F_{externa}$: Sum(\mathbf{p}) = Sum(\mathbf{p}_0)

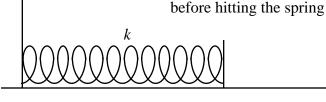
- 8. What is the final velocity vector, \mathbf{v} , of a mass, m, with initial momentum, \mathbf{p}_0 , acted on by a constant force, **F**, for a time, t? (Use Newton's second law, given above)

$$\boxed{\mathbf{v} = \frac{\mathbf{p}_0}{m} + \frac{\mathbf{F}}{m}t} \quad \text{(use } m\mathbf{v} = \mathbf{p}_0 + \mathbf{F}t\text{)}$$

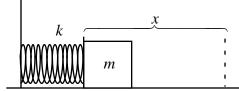
- 9. A cannon with mass, m_c , is initially at rest on a frictionless surface. Firing a cannonball with mass, m_b , the cannon recoils with the speed, v_c . What is the speed, v_b , of the ball?

 - b) $v_b = \frac{m_c}{m_b} v_c$ (momentum conservation requires $m_b v_b = m_c v_c$.)
 - c) $v_b = \frac{m_c m_b}{m_b + m_c} v_c$
 - d) $v_b = v_c$
 - e) $v_b = v_c + \frac{m_b}{m} v_c$

- 10. During the collision of a fast moving Porsche (small mass) with a Snow Plow (large mass), compare the magnitude of the forces acting on the Porsche and Plow. The magnitude of the force acting on the Porsche is
 - a) much larger than the magnitude of the force acting on the Plow.
 - b) much smaller than the magnitude of the force acting on the Plow.
 - c) balanced by the magnitude of the force acting on the Plow.
 - d) equal to the magnitude of the force acting on the Plow. (action reaction pair)
 - e) a little smaller than the magnitude of the force acting on the Plow.


Calculator and Pencil only. No books or notes.

Name: ID: _____


<u>Hooke's law</u>: F=kx; <u>Weight</u>: $W=F_G=mg$, g=9.81N/kg (on Earth), <u>Torque</u> (**F r**): $\neq r$;

<u>Work</u>: $w = \langle \mathbf{F} \rangle$ s; <u>Potential Energy</u>: $PE_S = \frac{1}{2}kx^2$ (spring), $PE_G = mgh$ (gravity on Earth);

<u>Kinetic Energy</u>: $KE = \frac{1}{2}mv^2$; <u>Energy Conservation</u>: $KE + PE = KE_0 + PE_0 + w_{NCF}$; <u>Momentum</u>: $\mathbf{p} = m\mathbf{v}$; 2^{nd} law (**F** const.): $\mathbf{p} = \mathbf{p}_0 + \mathbf{F}t$; No $F_{external}$: Sum(\mathbf{p}) = Sum(\mathbf{p}_0)

at maximum compression of the spring

On a frictionless surface, a mass, m = 2 kg, moves at a speed, v, and hits an ideal spring, spring constant, k = 200 N/m. The spring's maximum compression is x = 0.5 m.

11) Determine the spring potential energy, *PE*, at the maximum compression.

- b) 100 J c) 90 J d) 400 J e) 0 J

$$PE = \frac{1}{2}kx^2 = (100 \text{ N/m})(0.5 \text{ m})^2 = 25 \text{ J}$$

12) Determine the maximum force, F, the spring applies to the mass during the compression (hint: use Hooke's law).

a) 25 N

- b) 100 N
 - c) 90 N d) 400 N e) 0 N

$$F = kx = (200 \text{ N/m})(0.5 \text{ m}) = 100 \text{ N}$$

13) Determine the speed, v, of the mass before it hits the spring (hint: use Energy Conservation).

a)
$$5\text{m/s}$$
 b) 10m/s c) 15m/s d) 20m/s e) 25m/s

$$KE_0 + PE_0 = KE + PE$$

$$\frac{1}{2}mv^2 + 0 = 0 + 25 \text{ J}$$

$$v^2 = 25 \text{ m}^2/\text{s}^2 \qquad v = 5\text{m/s}$$

$$v^2 = 25 \text{ m}^2/\text{s}^2$$

14) Determine the speed, v, of the mass when the compression of the spring is $0.3 \,\mathrm{m}$ (on its way to the $0.5 \,\mathrm{m}$ maximum compression).

$$KE_0 + PE_0 = KE + PE;$$
 $PE = \frac{1}{2}kx^2 = (100 \text{ N/m})(0.3 \text{ m})^2 = 9 \text{ J}$
 $25 \text{ J} + 0 = \frac{1}{2}mv^2 + 9 \text{ J}$
 $\frac{1}{2}mv^2 = 25 \text{ J} - 9 \text{ J} = 16 \text{ J};$ $v^2 = 16 \text{ m}^2/\text{s}^2$ $v = 4\text{m/s}$

15) When the spring compresses the maximum distance, determine the momentum transferred from the mass to the Earth.

Sum(
$$\mathbf{p}$$
) = Sum(\mathbf{p}_0)
 $\mathbf{p}_{\text{earth}} + 0 = 0 + mv_0 = (2 \text{ kg})(5 \text{ m/ s}) = 10 \text{ Ns}$