Homework 7

(**Do not guess** the value of $m_{\rm R}$, or $m_{\rm L}$! Use the subscripts L and R on the masses)

1. The weights are
$$W_{\rm L} = m_{\rm L}g$$
 and $W_{\rm R} = m_{\rm R}g$

2. The compression forces are $C_L = m_L g$ and $C_R = m_R g$ The directions (*are*) the same. The forces acting on the board and on the earth are drawn on the Figure.

3 The force angles are 90°

4. Magnitude of torques about the pivot point are: $L = m_L gr$ and, $R = m_R gr/3$

5. The torque vectors try to rotate the board in the (opposite) directions

6. Mass $m_{\rm L}$ generates the torque vector, $\tau_{\rm L} = -m_{\rm L}gr$

7. Mass $m_{\rm R}$ generates the torque vector, $\tau_{\rm R} = +m_{\rm R}gr/3$

8. Net torque <u>vector</u>, acting on the board, $\tau_{\text{Net}} = -m_{\text{L}}gr + m_{\text{R}}gr/3$

9. The net torque on the board must be, $\tau_{\text{Net}} = 0$,

if the board is balanced.

10 The right mass, $m_{\rm R} = 3m_{\rm L}$

$$-m_{\rm L}gr + m_{\rm R}gr/3 = 0$$
$$m_{\rm R}/3 = m_{\rm L}$$
$$m_{\rm R} = 3m_{\rm L}$$

11. The net force on the board must be, $\mathbf{F}_{Net} = 0$, if it is balanced. 12. The net force acting on the board, ($\mathbf{C}_L = -m_L g$, $\mathbf{C}_R = -m_R g = -3m_L g$) \mathbf{F}_{Net} , = $\mathbf{C}_L + \mathbf{C}_R + \mathbf{C} = (-m_L g) + (-3m_L g) + (+C) = 0$ (balanced)

13. The magnitude $C = 4m_{\rm L}g$.

The forces acting on the ground (do) balance

14. If the masses are hung from the board, the C's change to T's and nothing else.

Homework 7

15. The <u>net force</u> and <u>net torque</u> must be set equal to zero to determine the forces acting on a *balanced* beam

Figure for Problems 16-20: Three masses on a massless board.

16. The *force* vectors applied to the board are shown on the Figure and generate torques:

17
$$\mathbf{\tau}_1 = -m_1gx$$
, $\mathbf{\tau}_2 = +m_2gx$, and, $\mathbf{\tau}_3 = +m_3gr$ (+, clockwise)

- 18. Net torque vector $\mathbf{T}_{\text{Net}} = \mathbf{T}_1 + \mathbf{T}_2 + \mathbf{T}_3 = -m_1gx + m_2gx + m_3gr$
- 19. A balanced board has a net torque vector = $0 = -m_1gx + m_2gx + m_3gr$

 $m_3gr = (m_1g - m_2g)x$

$$r = [(m_1 - m_2)/m_3]x$$

20. The location, r, of m₃ that will balance the board is <u>a)</u> $r = [(m_1 - m_2)/m_3]x$

21. r = 10 m, m = 100 kg, x = 7 m,

(C at the pivot, F in the cable (use m), and T in the wire) are drawn on the Figure.

22. The torque vectors acting on the board are: $\mathbf{T}_{pivot} = 0$, $\mathbf{T}_{cable} = mgx$, $\mathbf{T}_{wire} = -Tr$.

$$\tau_{\text{Net}} = mgx - Tr = 0$$
 $\underline{T = mgx/r}$

23. The tension in the wire is, T = mgx/r = (100 kg)(10 N/kg)(7 m)/(10 m) = 700 N

$$\mathbf{F}_{\text{Net}} = \mathbf{C} + \mathbf{T} + \mathbf{F} = (+C_{\text{pivot}}) + (+mgx/r) + (-mg)$$
 $C_{\text{pivot}} = mg(1-x/r)$

24. $C_{\text{pivot}} = mg(1 - x/r) = (1000 \text{ N})[1 - (7 \text{ m})/(10 \text{ m})] = (1000 \text{ N})(0.3) = 300 \text{ N}$

Homework 7

$\underline{T} = \underline{F}$	(balance at the handle)
$T_B = 2T = 2F$	(balance at the pulley)
$F_f = T_B = 2F$	(balance at the mass)

 $\underline{\mathbf{F}_{f}} = +2F$ (same direction as **F**)

 $F_{wall} = 3T = 3F$ (same direction as **F**)

$$\mathbf{F}_{wall} = +3F$$

25. The tension in the rope is:	<u>a) F</u>
26. The frictional force vector is:	e) $\mathbf{F}_{f} = +2F$
27. The net rope force, \mathbf{F}_R , on the wa	all is: <u>e) $\mathbf{F}_{R} = +3F$</u>