

Quiz 7 March 27, 2001

1. A spring has stored 30 Joules of potential energy. It transfers 10 Joules to the kinetic energy of a mass. What is the potential energy that remains stored by the spring?

Spring forces conserve energy.

- a) 10 Joules
- b) 20 Joules**
- c) 30 Joules
- d) 40 Joules
- e) 50 Joules

$$\begin{aligned}KE_0 + PE_0 &= KE + PE \\(0) + (30 \text{ J}) &= (10 \text{ J}) + PE \\PE &= 20 \text{ J}\end{aligned}$$

2. A spring stores 50 Joules of potential energy. Initially at rest, a mass fired from that spring is observed to have 50 Joules of kinetic energy. What is the length of the spring?

$$\begin{aligned}KE_0 + PE_0 &= KE + PE \\(0) + (50 \text{ J}) &= (50 \text{ J}) + PE \\PE &= 0\end{aligned}$$

A spring storing no potential energy has its natural length.

- a) 1 m
- b) 3 m
- c) 5 m
- d) 10 m
- e) the natural length**

3. Which choice below is NOT equivalent to 1 Joule of energy.

These quantities have the units of energy.

- a) 1 N m
- b) 1 (N/m) m²
- c) 1 kg (m/s)**
- d) 1 kg (m²/s²)
- e) none of the above

$$\begin{aligned}w &= \mathbf{F} \cdot \mathbf{s} ; \text{ units: Nm} \\PE_S &= \frac{1}{2} kx^2 ; \text{ units: } \frac{\text{N}}{\text{m}} \text{ m}^2 \\KE &= \frac{1}{2} mv^2 ; \text{ units: kg} \frac{\text{m}^2}{\text{s}^2}\end{aligned}$$