
1

 PHY 440 Lab14: Programmable Logic Design Techniques I

 The design of digital circuits is a multi-step process. Specs.
It starts with specifications describing what the circuit must do.
Defining what a circuit receives as inputs and the outputs it Inpts. & Outs.
generates is the next step. Once these are known the designer
has to create a truth table, which lists what values the outputs Truth Table
will have for each possible combination of input values. Once
the truth table is written down, the designer has to derive Boolean Boolean Equat.
equations that describe how each binary output can be computed
from the binary inputs using logical operations such as AND, OR, Gate-level Design
NOT etc. Next, the Boolean equations are transformed into a
gate-level circuit schematic drawing. Each AND, OR etc. operation Simulate Circuit
in the Boolean equation is replaced with a corresponding AND
gate, OR gate etc. in the schematics. Inputs and outputs of these Build digital circuit
gates are wired to let the passage of binary results between
logical operations. Before building the circuit it is a good thing Debug Circuit
to make sure that all previous steps have been completed correctly.
It is done by manual or computer simulation. If successful, a
physical circuit is build. Real inputs are applied to the circuit
and possible bugs, if any, are fixed.

 You already built and tested some simple digital circuits using transistor-transistor logic
(TTL) devices, and a breadboard with the connections were made using wires. Please,
recall Lab 12 and Lab 13 for more details. As you have probably realized, this method of
building circuits is not quite convenient: not every type of TTL may be immediately
available; wires are often plugged into the wrong place and a lengthy check must be
made to find the error; once the circuit works it has to be taken apart to make room for
the next circuit; and last but not the least relatively complex digital circuits of more than
10-20 gates are practically impossible to be built and tested. These problems may be
eased if a different approach is followed and more elaborated tools employed. The design
of digital circuits may still begin by describing the truth table. The details of the logic
circuit needed to realize the truth table are, however, worked out by a logic-synthesis
program and not by hand. The operation of the "virtual" circuit built is checked using a
simulation program. If the circuit simulates correctly, the gates and wires are mapped into
a Field Programmable Gate Array (FPGA) using specialized place & route programs.
FPGA contains logic gates and the means for interconnecting them within a single
Integrated Circuit (IC). The programmed FPGA can be used independently or placed into
a larger circuit where it will perform its functions. In this Lab you will be using the
XILINX Foundation Series 2.1i software tools to create and test logic designs that can be
downloaded into the XC4003E FPGA. To be successful in this Lab you should review
Labs 12 & 13, Chapters 11 & 12 of DH and the Guides to the XILINX software and
hardware posted on the PHY440 WWW site.

2

Problem 1. Create a digital circuit of a single AND gate and verify its truth table.

 To begin, click on the "XILINX" icon. This will bring up the Project Manager
Window. Select the File --> New project menu item. Then, enter the project name (on
your choice), project directory (keep the default one), type of design flow (Foundation
Series 3.1i; Schematic), chip family(XC4000E), chip part number(4003EPC84) and
device speed (default). Click OK to return to the Project Manager Window.

 In the Project Manager window click on the Schematic Editor button (see the
screenshot above) and a schematic editor window will appear (see below).

3

 Select the Mode --> Symbols menu item and the SC window will appear with a list
of all type of gates/components we can use. Scroll the list of components in the SC
window, click on AND2 (two-input AND gate), move the cursor into the drawing area
and drop the AND2 gate there. We need to get our inputs and outputs into the circuit as
well. To do this click on the Inputs button. A dialog window (see below) will appear in
which you have to type the name and the type of each input and output.

4

 While we have entered the inputs and output terminals, we still need to add buffers
between the terminals and the logic gate. The buffers indicate that the signals attached to
them will actually enter and exit the FPGA chip via its I/O pins. To add input and output
buffers we select IBUF and OBUF symbols, respectively, from the SC symbol window
and drop them in the drawing area. The next step is to connect(wire) the input/outputs to
the AND gate. Select the Mode --> Draw Wires menu and do the wiring. A line will
appear connecting the inputs/outputs to the gate as shown below.

 Now that the schematics is done, we need to check it for errors. First, select
Options --> Create Netlist. This will activate a program that examines the schematic
drawing and generates a machine-readable netlist which describes what type of gates
are used (only one in our case) and how they are connected. Once it is done, select
Options --> Integrity test to initiate an error check. The check should indicate there are
no errors. Then save the schematics using the File --> Save menu item. Also, the netlist
created must be exported in a format that other XILINX tools understand. First click on
the Options --> Export Netlist and then on the Open button. Finally, select File --> Exit
to close the Schematic editor and go back to the Project Manager window.
 Now it is time to use the functional simulator to see if what we have entered is working
correctly. In the present case it is to check the truth table for the AND gate.
Start the functional Simulator by clicking the corresponding button in the Project
Manager window. This brings up the Logic Simulator window. The first thing to do is
add the inputs and outputs of the logic circuit to the Waveform Viewer so we can see

5

what is happening as the circuit is simulated. Do this by selecting the Signal --> Add
Signals.. menu item. The Component Selection for Waveform Viewer window will
appear. Click on the one of the inputs to highlight it and then click on the Add button.
Repeat it for the rest terminals. Then click on the Close button.
Now the inputs and the output are displayed but nothing happens since the two inputs are
set to logic 0. We need to apply a stimulus to the circuit, so we select the Signal --> Add
Stimulators menu item. This brings up the Stimulator Selection window. We are
interested in the 16-bit counter labeled Bc (see below).

 During a simulation the right-most 4 bits of this counter will go through the following
sequence: 0000, 0001, 0010, 0011, 0100, 0101...etc. We can test the response of our
circuit (a single AND gate) to every possible combination of inputs by attaching the two
inputs of our logic circuit to two of these bits, let say B0 and B1. We do this by clicking
on the name of the input in the Waveform viewer and then clicking on the corresponding
bit-circle in the Bc section of the Stimulator Selection window. Once the two inputs are
attached to the counter bits, we click Close to leave the Stimulator Selection window.
Next we set up the parameters that control the speed of the simulation. Select
Options --> Preferences and set the frequency to 500 Hz, the period to 2 ms and the
display to 20 ms (other settings for the frequency, period and the display may work
equally well; experiment if you wish so). Then click OK.

6

Now we can run the simulations. Click on the button to initiate the functional
simulation. Within seconds, the results of the simulation appear as shown below.

Note that the output goes high only when the two inputs are high. This exactly matches
the truth table for the AND gate.

Following the procedure described above verify the truth tables for OR and NAND gates.

Problem 2. Design the circuit given below and show (by simulation) that 4 NAND gates
can make a single NOR gate (recall Experiment 8, Lab 3).

7

Problem 3. Design a 2-to-4 Decoder using 6 NOR gates (Recall Experiment 4, Lab 4).
Compile the logic design and download it to the Xilinx FPGA (XC4000E) demo board.
Test the Decoder using one of the 7-segment LED on the board.

 Suppose you have designed and simulated the circuit (see above) successfully. Now
we can proceed with compiling the design into a bit-stream that can be loaded into the
FPGA chip and tested. The test is done by applying signals to certain pins of the FPGA
that correspond to the inputs of the circuit. We also have to hook an LED to the pins that
carry the outputs so we can visually observe if the circuit is operating correctly.
 First, we have to assign the two inputs of the circuit to two pins of the XC4003 FPGA
which can be driven by a corresponding switch (labeled SW3) incorporated in the board.
The pins we can use are # 19, 20 and 23 to 28. To do it, double-click on any IBUF to set
it attributes. The Symbol Properties window will appear (see below). Click in the Name
box and type LOC. Click in the Description box and type p19. Click the Add button.
Click OK. Let us assign the INP1 and INP2 inputs (the buffers !) to pins 19 and 20,
respectively.

8

Let assign the OUT1, OUT2, OUT3 and OUT4 outputs (the buffers !) to pins 49, 48,47
and 46. Pins 49, 48, 47, 46, 45,50 and 51 drive the 7-segment LED (labeled U8) on the
board. Pin 41 drives the decimal point on U8. So by associating the output of the logic
circuit with pins 49 to 46 we could observe the results coming out on the LED. Hopefully
you ended up with a circuit like the following one:

9

 Once all inputs and outputs are assigned to pins do not forget to create and export a
netlist ! Save your design and Exit back to the Project Manager.

 Now it is time to compile your design. Do it by selecting the Implementation menu
item. When it appears Click on Run. The Flow engine (see below) will show up. The
compilation goes through the following steps: (they do not require any actions of yours)

10

Translate: Converts the netlist to an appropriate internal format.
Map: Optimizes the logic circuit.
Place&Route: The gates in the netlist are assigned to particular programmable switch
matrices in the FPGA.
Timing: Computes the delay of the signal while it propagates through the circuit.
Configure: Stream of bits is generated which can be downloaded into the FPGA chip to
configure it to carry out the logic functions described in the schematic file.
 The next step it to download the bit-stream file to the demo board and program the
FPGA. First, power up the board (+ 5V). Go back to the Project Manager window and
click on the Programming button. Select the Hardware debugger program. It is a
graphical interface that allows you to download a design to a FPGA, verify the
downloaded configuration, and display the internal states of the programmed FPGA. The
bit-stream file is downloaded to the board through a serial port cable (XChecker cable).

11

Once the Hardware debugger starts select Download/Download design menu item.

When the downloading is finished, Exit the program.
 Exercise the functions of your design by providing logic inputs to the FPGA just
programmed. Use the SW3 switch(es) on the board to set the associated input pin(s) of
FPGA to a logic “1” or “0”. Close(“1”)/open(”0”) the corresponding switch(es) and
examine the response of LED. Does your circuit function properly ? Please, note that
each LED segment is turned on by driving the corresponding FPGA output pin “LOW”
with a logic “0”.

12

Problem 4. Design a 3-to-8 Decoder. (Recall Experiment 5, Lab 12). Compile the logic
design and download it to the demo board. Test the decoder using the7-segment LED on
the board. (Hint: use the D3_8E component available in the SC library)

13

LED display
 U8

 FPGA
XC4003

Switch SW3

14

