Consider a structure of a long L shaped metal electrical conductor and a long round metal pipe. They are in a square metal enclosure as shown below:

The enclosure is at ground potential (0 volts), the "L" is at +20,000 volts, and the cylinder is at -20,000 volts. The numbers in the pattern on the right represent the values of the **electrical potential**, i.e., the voltage at the various locations, in kilovolts. (1Volt = 1Joule/Coulomb).

- 1. Use the left hand corner as (H,V)=(0,0); (H = horizontal), (V = vertical), both in cm.
 - Mark an 'x' at (H,V)= (5,19)
 - Mark an 'y' at (H,V)= (17,9)
 - Mark an 'z' at (H,V)=(21,5)
 - Mark an 'i' at (H,V)=(3,16)
- 2. The PE of a charge of 1×10^{-6} C located at 'x' is:
- 3. The PE of a charge of -2×10^{-6} C located at 'y' is:
- 4. The PE of a charge of 3×10^{-6} C located at 'z' is:
- 5. The work required to (slowly) move a charge of 4×10^{-6} C from y to z is
- 6. The work required to (slowly) move a charge of 5×10^{-6} C from y to x is
- 8. Draw the equipotential contour(s) for potential = 0., $+20 \ kilovolts$, $-20 \ kV$, $+10 \ kV$, $-10 \ kV$.
- 9. Electric Field inside the enclosure:
 - locate a position where the electric field is very strong. Mark it S.
 - locate a position where the electric field is 0. Mark it **E=0**.
 - locate a position near the "L" where the Electric field is weak: Mark it W.
- 10. The force on a charge of -1.6×10^{-19} C located at x is It points in the N NE E SE S SW W NW direction.
- 11. The force on a charge of $+1.6 \times 10^{-19}$ C located at i is It points in the N NE E SE S SW W NW direction.
- 12. The force on a charge of -3.2×10^{-19} C located at z is It points in the N NE E SE S SW W NW direction.