Lecture 11

Chapter 26 Capacitance

Set #3, Problem #4

Set #3, Problem #4

Set #3, Problem #4

Capacitance (23)

- Parallel-plate capacitor charged to potential *V* by battery
- Disconnect battery to have isolated system
- If decrease distance, *d*, between the plates what happens to *C*?
 LARGER
- What happens to V ?
 Isolated system q stays same so V decreases if C increases

Capacitance (24)

- What happens if put material between the plates?
- Will the capacitance of the plates increase or decrease?

$$C = \frac{q}{V}$$

V decreases so C increases

Capacitance (25)

- Why does C increase if add material?
- Material made up of molecules which are dipoles
- Molecules align with *E* field from capacitor

Capacitance (26)

- Dipoles set up *E* field which opposes capacitors *E* field
- Total *E* field is weakened by adding material
- Material is called a
 dielectric

• *E* field is weaker so *V* decreases

• q is constant so C INCREASES

Capacitance (28)

- Place a dielectric in capacitor its capacitance increases by numerical factor
 - Called dielectric constant, κ

$$C_{dielectric} = \kappa C_{air}$$

- Modify all electrostatic equations by replacing ϵ_0 with $\kappa\epsilon_0$

$$E = \frac{1}{4\pi\kappa\varepsilon_0} \frac{q}{r^2} \qquad \varepsilon_0 \oint \kappa \vec{E} \bullet d\vec{A} = q$$

Capacitance (29)

- If system connected to battery, *V* is a constant
- C increases with dielectric so q must increase

$$q = CV$$

- If system isolated, q is a constant
- C increases with dielectric so V must decrease

V=a constant

(a)

Capacitance (30)

- What if we have more than one capacitor in a circuit?
 - Replace combination with equivalent capacitor C_{eq}
- 2 basic combinations
 - Parallel
 - Series

Capacitance (31)

- Capacitors in parallel
- Capacitors are directly wired together at each plate and V applied across the group of plates

• V is same across all capacitors

$$V_1 = V_2 = V_3 = V$$

Capacitance (32)

- Capacitors in parallel
- Total q stored on capacitors is sum of the charges of all capacitors

$$q = q_1 + q_2 + q_3$$

 C_{eq} has total charge q and same V as original capacitors

$$C_{eq} = \frac{q}{V}$$

Capacitance (33)

Capacitance (34)

- Capacitors in series
- Capacitors are wired one after the other and V is applied across the two ends of the series
- Capacitors have identical q

$$q_1 = q_2 = q_3 = q$$

 Battery produces q only on top and bottom plates, induced q on other plates

(b)

Capacitance (35)

- Capacitors in series
- Sum of V across all capacitors is equal to applied

$$V_{V} = V_{1} + V_{2} + V_{3}$$

 C_{eq} has same q and total V as original capacitors

$$C_{eq} = \frac{q}{V}$$

Capacitance (37)

- Capacitors in series
- Charge can only be shifted from one capacitor to another
- If alternate routes not in series

• C_{eq} is always less than smallest capacitance

Capacitance (38)

- Capacitors in parallel
 - V across each is equal
 - Total q is sum

- Capacitors in series
 - -q is equal on each
 - Total V is sum

Capacitance (39)

- Checkpoint #3 A battery with V stores charge q on 2 identical capacitors
- A) What is V across and q on either capacitor if they are in parallel?
- V is same for each and equal to
 V of battery
 - Total charge conserved so

$$q = q_1 + q_2 = 2q_1$$

$$q_{cap} = \frac{q}{2}$$

Capacitance (40)

- Checkpoint #3 A battery with V stores charge q on 2 identical capacitors
- A) What is V across and q on either capacitor if they are in series?
 - q is same for each
 - *V* is sum of *V* across capacitors

$$V = V_1 + V_2 = 2V_1$$

$$V_{cap} = \frac{V}{2}$$