Lecture 11

Chapter 26

Capacitance
Set #3, Problem #4

• Let $Q_1, Q_3 > 0$ and $Q_2 = -Q_1$ so
 - Q_1 is $+$
 - Q_3 is $+$
 - Q_2 is $-$
 - $Q_1 = Q_2 = Q$
Set #3, Problem #4

True or false: V at (0,0) is zero

False

$V = \sum_{1}^{n} V = k (V_1 + V_2 + V_3)$

$V = k \left(\frac{Q_1}{a} + \frac{Q_2}{a} + \frac{Q_3}{d} \right) = k \left(\frac{Q}{a} - \frac{Q}{a} + \frac{Q_3}{d} \right)$

$V = k \left(\frac{Q_3}{d} \right)$

V is + for any position along y-axis
Set #3, Problem #4

Where does F point at Q_3?

It is TRUE that:

- Q_3 will accelerate to right
- F_y on Q_3 due to other charges is zero
- W to move Q_3 to origin is zero

$$W = \vec{F} \cdot \vec{d} = Fd \cos(90)$$
Set #3, Problem #4

Where does F point at 0?

E field at origin does not point directly away from Q_1
True or false: External work to bring charges together is negative

True

\[W = \Delta U = k \frac{qq'}{r} \]

\[U = U_{12} + U_{13} + U_{23} \]

\[U_{13} = -U_{23} \]

\[U_{12} = k \frac{Q(-Q)}{2a} \]
Capacitance (23)

- Parallel-plate capacitor charged to potential V by battery
- Disconnect battery to have isolated system
- If decrease distance, d, between the plates what happens to C? LARGER
- What happens to V? Isolated system q stays same so V decreases if C increases
Capacitance (24)

• What happens if put material between the plates?

• Will the capacitance of the plates increase or decrease?

\[C = \frac{q}{V} \]

\(V \) decreases so \(C \) increases
Capacitance (25)

- Why does C increase if add material?
- Material made up of molecules which are dipoles
- Molecules align with E field from capacitor
Capacitance (26)

- Dipoles set up E field which opposes capacitors E field

- Total E field is weakened by adding material

- Material is called a dielectric
Capacitance (27)

\[V = Ed \]

- \(E \) field is weaker so \(V \) decreases

\[C = \frac{q}{V} \]

- \(q \) is constant so \(C \) INCREASES
Capacitance (28)

- Place a dielectric in capacitor its capacitance increases by numerical factor
 - Called dielectric constant, \(\kappa \)

\[C_{\text{dielectric}} = \kappa C_{\text{air}} \]

- Modify all electrostatic equations by replacing \(\varepsilon_0 \) with \(\kappa \varepsilon_0 \)

\[E = \frac{1}{4\pi \kappa \varepsilon_0} \frac{q}{r^2} \]

\[\varepsilon_0 \int \kappa \vec{E} \cdot d\vec{A} = q \]
Capacitance (29)

- If system connected to battery, V is a constant
- C increases with dielectric so q must increase

$$q = CV$$

- If system isolated, q is a constant
- C increases with dielectric so V must decrease
Capacitance (30)

• What if we have more than one capacitor in a circuit?
 – Replace combination with equivalent capacitor C_{eq}

• 2 basic combinations
 – Parallel
 – Series
Capacitance (31)

- Capacitors in parallel
- Capacitors are directly wired together at each plate and V applied across the group of plates
- V is same across all capacitors

$$V_1 = V_2 = V_3 = V$$
• Capacitors in parallel
• Total q stored on capacitors is sum of the charges of all capacitors

$$q = q_1 + q_2 + q_3$$

• C_{eq} has total charge q and same V as original capacitors

$$C_{eq} = \frac{q}{V}$$
Capacitance (33)

- Capacitors in parallel

\[q = q_1 + q_2 + q_3 \]

\[q_1 = C_1V \quad q_2 = C_2V \quad q_3 = C_3V \]

\[q = (C_1 + C_2 + C_3)V \]

\[C_{eq} = C_1 + C_2 + C_3 \]

\[C_{eq} = \sum_{i=1}^{n} C_i \]
Capacitance (34)

- Capacitors in series
- Capacitors are wired one after the other and \(V \) is applied across the two ends of the series
- Capacitors have identical \(q \)

\[q_1 = q_2 = q_3 = q \]

- Battery produces \(q \) only on top and bottom plates, induced \(q \) on other plates
Capacitance (35)

- Capacitors in series
- Sum of V across all capacitors is equal to applied V

$$ V = V_1 + V_2 + V_3 $$

- C_{eq} has same q and total V as original capacitors

$$ C_{eq} = \frac{q}{V} $$
Capacitance (36)

- Capacitors in series

\[V = V_1 + V_2 + V_3 \]

\[
V_1 = \frac{q}{C_1} \quad V_2 = \frac{q}{C_2} \quad V_3 = \frac{q}{C_3}
\]

\[V = q \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \]

\[\frac{1}{C_{eq}} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \]
Capacitance (37)

- Capacitors in series
- Charge can only be shifted from one capacitor to another
- If alternate routes not in series

\[
\frac{1}{C_{eq}} = \sum_{i}^{n} \frac{1}{C_i}
\]

- \(C_{eq} \) is always less than smallest capacitance
Capacitance (38)

- Capacitors in parallel
 - V across each is equal
 - Total q is sum

- Capacitors in series
 - q is equal on each
 - Total V is sum
Capacitance (39)

- Checkpoint #3 – A battery with V stores charge q on 2 identical capacitors
- A) What is V across and q on either capacitor if they are in parallel?
- V is same for each and equal to V of battery
- Total charge conserved so

\[q = q_1 + q_2 = 2q_1 \quad \text{and} \quad q_{\text{cap}} = \frac{q}{2} \]
Capacitance (40)

• Checkpoint #3 – A battery with V stores charge q on 2 identical capacitors

• A) What is V across and q on either capacitor if they are in series?

 • q is same for each

 • V is sum of V across capacitors

\[V = V_1 + V_2 = 2V_1 \]

\[V_{cap} = \frac{V}{2} \]