#### Lecture 12

Chapter 26
Capacitance - Examples

#### Capacitance – Question #4

A) In (a) are C<sub>1</sub> and C<sub>3</sub> in series?

#### YES

B) In (a) are C<sub>1</sub> and C<sub>2</sub> in parallel?

#### YES

Rank the C<sub>eq</sub> of the 4 circuits.

All the same







#### Capacitance – Question #9

• After switches close for which circuit will 6q the charge on the left<sub>20</sub> hand capacitor



<u>2</u>

B) decrease?

3

C) same?



 Charge flows until the capacitors have the same potential, V

$$q = CV$$

1

#### Lecture 12

Chapter 27
Current and Resistance

#### Current (1)

What happens when charges move?

- Isolated conductor
  - Random motion of conduction electrons in both directions so net transport of charges
  - Same potential everywhere, no
     E field inside or on surface so
     no electric F on electrons
- No current in isolated conductor

#### Current (2)

- What happens when charges move?
- Adding a battery
  - Bias flow of conduction electrons in one direction have net transport of charge
  - Not a single potential, have
     E field inside which exerts F
     on electrons
- Current in a conductor when attached to a battery



#### Current (3)

- Amount of current, i
  equals amount of q that
  passes in t through an
  area ⊥ to the flow
- If i doesn't vary with time (called steady state) q is conserved, i is the same for all planes which pass through conductor
  - Orientation doesn't matter





#### Current (4)

SI unit for current is ampere

$$1A = 1C/s$$

- Current is a scalar
- Use arrows to indicate charge flow along conductor



q is conserved so

$$i_0 = i_1 + i_2$$

# Current (5)

- Convention: a current arrow is drawn in direction of + charge flow
  - Defined direction of current is opposite to direction of physical current (electrons are the moving charges)
- Current arrows are not vectors
- Bending or reorienting wires does not change



#### Current (6)

 Checkpoint #1 – What is the magnitude and direction of the current, i, in the lower right-hand wire?

q is conserved

$$i_{in} = i_{out}$$

$$i_{out} = 3A + i$$

 $2 A \cdot$ 

$$i=8A$$
 To the right

# Current (7)

- Total current through a surface can be defined as
- Current density, J flow of charge through a cross section
- If i uniform and parallel to dA

• SI unit for J is A/m<sup>2</sup>

$$i = \int \vec{J} \bullet d\vec{A}$$

$$i = \int JdA = JA$$

$$J = \frac{i}{A}$$

# Current (8)

- Represent J by streamlines
- q is conserved so amount of i cannot change
- J becomes greater in narrower conductor
- Streamlines closer together mean greater J





# Current (9)

 No current in conductor electrons move randomly with speeds ≈ 10<sup>6</sup> m/s



• Drift speeds are tiny  $v_d \approx 10^{-5}$  or  $10^{-4}$  m/s



- Why do the lights come on quickly?
- E field moves at speed of light