Lecture 12

Chapter 26

Capacitance - Examples
Capacitance – Question #4

• A) In (a) are C_1 and C_3 in series?
 YES
• B) In (a) are C_1 and C_2 in parallel?
 YES
• Rank the C_{eq} of the 4 circuits.
 All the same
Capacitance – Question #9

- After switches close for which circuit will the charge on the left-hand capacitor:
 - A) increase? 2
 - B) decrease? 3
 - C) same? 1

- Charge flows until the capacitors have the same potential, V

$$q = CV$$
Lecture 12

Chapter 27
Current and Resistance
Current (1)

• What happens when charges move?
 • **Isolated conductor** –
 – Random motion of conduction electrons in both directions so no net transport of charges
 – Same potential everywhere, no E field inside or on surface so no electric F on electrons

• **No current** in isolated conductor
Current (2)

• What happens when charges move?

• Adding a battery –
 – Bias flow of conduction electrons in one direction have net transport of charge
 – Not a single potential, have \(E \) field inside which exerts \(F \) on electrons

• Current in a conductor when attached to a battery
Current (3)

- Amount of current, \(i \) equals amount of \(q \) that passes in \(t \) through an area \(\perp \) to the flow
- If \(i \) doesn’t vary with time (called steady state) \(q \) is conserved, \(i \) is the same for all planes which pass through conductor
 - Orientation doesn’t matter

\[
i = \frac{dq}{dt}
\]
Current (4)

- SI unit for current is ampere

- Current is a scalar

- Use arrows to indicate charge flow along conductor

- q is conserved so

\[i_0 = i_1 + i_2 \]
Current (5)

• **Convention:** a current arrow is drawn in direction of + charge flow
 - Defined direction of current is opposite to direction of physical current (electrons are the moving charges)

• Current arrows are not vectors

• Bending or reorienting wires does not change

\[i_0 = i_1 + i_2 \]
Current (6)

- Checkpoint #1 – What is the magnitude and direction of the current, \(i \), in the lower right-hand wire?
- \(q \) is conserved

\[
\begin{align*}
i_{in} &= i_{out} \\
i_{in} &= 11A \\
i_{out} &= 3A + i \\
i &= 8A
\end{align*}
\]

To the right
Current (7)

- Total current through a surface can be defined as
- **Current density**, J – flow of charge through a cross section
- If i uniform and parallel to dA
- SI unit for J is A/m^2

\[
i = \int \vec{J} \cdot d\vec{A}
\]

\[
i = \int J dA = JA
\]

\[
J = \frac{i}{A}
\]
Current (8)

- Represent J by streamlines

- q is conserved so amount of i cannot change

- J becomes greater in narrower conductor

- Streamlines closer together mean greater J

\[J = \frac{i}{A} \]
Current (9)

- No current in conductor; electrons move randomly with speeds $\approx 10^6$ m/s

- If current present, electrons also move with a drift speed v_d

- Drift speeds are tiny; $v_d \approx 10^{-5}$ or 10^{-4} m/s

- Why do the lights come on quickly?
 - E field moves at speed of light