Lecture 18

Chapter 29 Magnetic Fields

Review

• Force due to a magnetic field is

- F_B is always \perp to v and B
- *F_B* does not change the speed (magnitude of *v*) or kinetic energy of particle
- F_B only changes direction of v

Magnetic Fields (24)

• *F_B* continually deflects path charged particles

- If v and B are \perp , F_B causes charged particles to move in a circular path
- If looking in direction of B, + particles move counterclockwise and – particles move clockwise

Magnetic Fields (25)

 Derive radius of circular path for particle of charge, q, and mass, m, moving with velocity, v, which is ⊥ to B field

$$\vec{F}_B = q\vec{v} \times \vec{B} = qvB\sin\phi = qvB$$

• Newton's second law for circular motion is

$$\vec{F} = m\vec{a} = m\frac{v^2}{r}$$

Magnetic Fields (26)

• Setting the forces equal and solving for *r*

$$qvB = m\frac{v^2}{r}$$

$$r = \frac{mv}{qB}$$

- Checkpoint #4 A proton and an electron travel at same v in a B field into the page
- A) Which particle follows the smaller circle?

 $r \propto m, m_p > m_e$ so the electron

• B) What direction does it move in?

Clockwise

Magnetic Fields (27)

• Period, *T*, is the time for one full revolution

$$T = \frac{2\pi r}{v} = \frac{2\pi}{v} \frac{mv}{qB} = \frac{2\pi m}{qB}$$

 Frequency, 7, 15 # or revolutions pér unit time

$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$
• Angular frequency, ω , is

$$\omega = 2\pi f = \frac{qB}{m}$$

Magnetic Fields (28)

- Nuclear and high-energy physicists probe the structure of matter by
 - Circulating charged particles in a magnetic field and applying electrical kicks to accelerate the particles
 - Slam particle into solid target or collide it with another particle head-on
- 2 devices used to accelerate particles are:
 - Cyclotron one right next door
 - Synchrotron Fermi National Accelerator Laboratory (Fermilab) collides protons and anti-protons

Magnetic Fields (29)

- Particles starts at center
- Circulate inside 2 hollow metal D shaped objects
- Alternate the electric sign of the Dees so V across gap alternates
- Whole thing immersed in magnetic field $B \perp$ to v(*B* field out of page and approximately 1.5 T)

Magnetic Fields (30)

- Proton starting in center will move toward negatively charged Dee
- Inside Dee E field = 0

 (inside conductor) but B
 field causes proton to
 move in circle with radius
 which depends on v

$$r = \frac{mv}{qB}$$

Magnetic Fields (31)

- When proton enters gap between Dees E field is flipped so proton is again attracted to negatively charged Dee
- Every time proton enters gap the polarity of the Dees is changed and the proton is given another kick (accelerated)

Magnetic Fields (32)

Cyclotron

Key is that the frequency,
 f, of the proton does not
 depend on *v* and must
 equal the *f*_{osc} of the Dees

$$f = f_{osc}$$

$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$

$$qB = 2\pi m f_{osc}$$

Magnetic Fields (33)

- Has single *f*osc
- For proton, q and m are fixed
- Tune cyclotron to get a beam of protons by varying *B* field

$$qB = 2\pi m f_{osc}$$

Magnetic Fields (34)

- Assumption that f of charged particle is independent of its speed only works for speeds much smaller than the speed of light
- At higher v the particle's f decreases as it is accelerated
- Cyclotron's frequency, f_{osc}, gets out of step with the particle's f

Magnetic Fields (35)

- To reach higher v thus higher energies use a synchroton
- The *B* field and *f*_{osc} vary with time
- Particles follow circular path instead of spiral

FERMILAB

Magnetic Fields (36)

- MSU cyclotron
 - Fits in building next door
 - Can accelerate several different kinds of nucleons
 - Generates beams of particles with energies of 200 MeV/nucleon (1 MeV = 10⁶ eV)

• FERMILAB

- Uses 6 synchrotrons the largest with 4 mile circumference
- Accelerates protons and anti-protons
- Protons move at 99.9999% speed of light (Go around ring 50,000 times in second)
- Beam energies of 1
 TeV (1 TeV = 10¹² eV)

Magnetic Fields (37)

Magnetic Fields (38)

- 1000 superconducting magnets in Tevatron
- Kept at 4.3 K (liquid helium)

- Magnetic field changes with time
- Radius of circle remains constant

Magnetic Fields (39)

- So far assumed v and
 B were always ⊥
- If v has a component || to B then particle will have helical path
- FERMILAB protons move in helical path clockwise and antiprotons move in helical path counter-clockwise

Magnetic Fields (40)

- What do we do with the particle beams?
- Can measure a particle's mass using a mass spectrometer.
- Accelerate particle using potential difference, V
- Chamber with *B* field causes particle to bend, striking photographic plate

Magnetic Fields (41)

 $r = \frac{mv}{qB} = \frac{m}{qB}\sqrt{\frac{2qV}{m}} = \frac{1}{B}\sqrt{\frac{2mV}{q}}$

Magnetic Fields (41)

 $B^2 x^2 q$

m

• Rearranging for *m*

$$m = \frac{B^2 r^2 q}{2V}$$

• Distance x = 2r

Magnetic Fields (42)

- Fermilab looks at collisions of protons and anti-protons
- Build 5,000 ton detectors around interaction point to observe what happens
- CDF (the Collider Detector at Fermilab) experiment

Magnetic Fields (43)

- Use giant solenoid to produce *B* field of 1.4 T
- Put detectors which show particle's path inside of *B* field

Magnetic Fields (44)

Magnetic Fields (45)

- Direction of curvature tells us the sign of the particle
- Amount of curvature,
 r, gives us the
 momentum

$$r = \frac{mv}{qB}$$

$$\vec{p} = m\vec{v} = rqB$$

For more info on Fermilab see http://www.fnal.gov

Magnetic Fields (46)

- Hall effect B field exerts force on electrons moving in wire
- Electrons cannot escape wire so force is transmitted to wire itself
- Change either direction of current or *B* field, reverses force on wire

