Lecture 23

Chapter 31
Induction and Inductance
Review

- Forces due to B fields
 - On a moving charge
 \[F_B = q\vec{v} \times \vec{B} \]
 - On a current
 \[F_B = i\vec{L} \times \vec{B} \]

- Current carrying coil feels a torque
 \[\vec{\tau} = \vec{\mu} \times \vec{B} \]
 \[\mu = NiA \]

- A current generates a B field
 - Biot-Savart law
 \[d\vec{B} = \frac{\mu_0}{4\pi} \frac{id\vec{s} \times \vec{r}}{r^3} \]
 - Ampere’s law
 \[\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc} \]
Review

• Calculated B field for
 – Long, straight wire
 \[B = \frac{\mu_0 i}{2\pi r} \]
 – At center of loop
 \[B = \frac{\mu_0 i}{2R} \]
 – Solenoid
 \[B = \mu_0 in \]

• Force on a wire carrying current, i_1, due to B of another parallel wire with current i_2

\[F = \frac{\mu_0 L i_1 i_2}{2\pi d} \]

• Force is attractive (repulsive) if current in both wires are same (opposite) directions

\[n = \frac{N}{L} \]
Inductance (1)

• A current can produce a B field
• Can a B field generate a current?
• Move a bar magnet in and out of loop of wire
 – Moving magnet towards loop current in loop
 – Current disappears when stops
 – Move magnet away from loop again appears but in direction
 – Faster motion produces a greater current
Inductance (2)

• Have 2 conducting loops near each other
 – Close switch so current flows in one loop, briefly register a current in other loop
 – Open switch, again briefly register current in other loop but in opposite direction
Inductance (3)

- Current produced in the loop is called **induced current**
- The work done per unit charge to produce the current is called an **induced emf**
- Process of producing the current and emf is called **induction**
Inductance (4)

- Faraday observed that an induced current (and an induced emf) can be generated in a loop of wire by:
 - Moving a permanent magnet in or out of the loop
 - Holding it close to a coil (solenoid) and changing the current in the coil
 - Keep the current in the coil constant but move the coil relative to the loop
 - Rotate the loop in a steady B field
 - Change the shape of the loop in a B field
Inductance (5)

- Faraday concluded that an emf and a current can be induced in a loop by changing the amount of magnetic field passing through the loop.
- Need to calculate the amount of magnetic field through the loop so define **magnetic flux** analogous to electric flux.
Inductance (6)

- Magnetic flux through area A

- $d\vec{A}$ is vector of magnitude that is \perp to the differential area, dA

- If B is uniform and \perp to A then

- SI unit is the weber, Wb

$$\Phi_B = \int \vec{B} \cdot d\vec{A}$$

$$\Phi_B = BA$$

$$1\text{Wb} = 1T \cdot m^2$$
Inductance (7)

- Faraday’s law of induction – induced emf in loop is equal to the rate at which the magnetic flux changes with time

- Minus signs means induced emf tends to oppose the flux change

- If magnetic flux is through a closely packed coil of N turns

\[E = - \frac{d\Phi_B}{dt} \]

\[E = -N \frac{d\Phi_B}{dt} \]
Inductance (8)

• Can change the magnetic flux through a loop (or coil) by
 – If \(B\) is constant within coil
 \[\Phi_B = \int \vec{B} \cdot d\vec{A} = BA \cos \theta \]
 – Change magnitude of \(B\) field within coil
 – Change area of coil, or portion of area within field
 – Change angle between \(B\) field and area of coil (e.g. rotating coil)

\[
E = -N \frac{d\Phi_B}{dt}
\]

\[
E = -N A \cos \theta \frac{dB}{dt}
\]

\[
E = -N B \cos \theta \frac{dA}{dt}
\]

\[
E = -N B A \frac{d(\cos \theta)}{dt}
\]
Inductance (9)

• Checkpoint #1 – Graph shows magnitude $B(t)$ of uniform B field passing through loop, \perp to plane of the loop. Rank the five regions according to magnitude of emf induced in loop, greatest first.

$$E = -N A \cos \theta \frac{dB}{dt} = -N A \frac{dB}{dt}$$

b, then d & e tie, then a & c (zero)
Inductance (10)

- **Lenz’s law** – An induced emf gives rise to a current whose B field opposes the change in flux that produced it
 - Magnet moves towards loop the flux in loop increases so induced current sets up B field opposite direction
 - Magnet moves away from loop the flux decreases so induced current have B field in same direction to oppose.

\[\text{Diagram of induction process} \]
Inductance (11)

• Checkpoint #2 – Three identical circular conductors in uniform B fields that are either increasing or decreasing in magnitude at identical rates. Rank according to magnitude of current induced in loop, greatest first.

• Use Lenz’s law to find direction of B_i
• Use right-hand rule to find direction of current
Inductance (12)

• Situation a –
 – From Lenz’s law, B_i from induced current opposes increasing B so B_i is into page
 – From right-hand rule, induced current is clockwise in both sections of circle

• Do same for situation b and c
 a & b tie, then c (zero)
Inductance (13)

• What is magnitude and direction of induced emf around loop at t=0.10s?
• Loop has width \(W = 3.0 \text{m} \) and height \(H = 2.0 \text{m} \)
• Loop in non-uniform and varying \(B \) field \(\perp \) to loop into the page

\[
B = 4t^2 x^2
\]

• Since magnitude \(B \) is changing in time, flux through the loop is changing so use Faraday law to calculate induced emf

\[
E = -\frac{d\Phi_B}{dt}
\]
Inductance (14)

• B is not uniform so need to calculate magnetic flux using

$$\Phi_B = \int \vec{B} \cdot d\vec{A}$$

• $B \perp$ to plane of loop and only changes in x direction

$$\vec{B} \cdot d\vec{A} = BdA = BHdx$$

• Treat time as constant so

$$\Phi_B = \int BHdx = 4t^2H \int_0^3 x^2 dx = 4t^2H \left[\frac{x^3}{3} \right]_0^3 = 72t^2$$
Inductance (15)

• Now use Faraday’s law to find the magnitude of the induced emf

\[E = \frac{d\Phi_B}{dt} = \frac{d(72t^2)}{dt} = 144t \]

• At \(t=0.10\)s, \(\text{emf} = 14 \) V

• Find direction of emf by Lenz’s law
 – \(B \) is increasing so \(B_i \) is in opposite direction - out of the page
 – Right-hand rule – current (and emf) are counterclockwise
Inductance (16)

- If you pull a loop at a constant velocity, v, through a B field, you must apply a constant force, F.
- As move loop to right, less area is in B field so magnetic flux decreases and current is induced in loop.
- Magnetic flux when B is \perp and constant to area is

$$\Phi_B = BA = BLx$$
Inductance (17)

- Using Faraday’s law

$$E = \frac{d\Phi_B}{dt} = \frac{d}{dt} BLx = BL \frac{dx}{dt}$$

- Remember $v = \frac{dx}{dt}$ so

$$E = BLv$$

- where L is the length of the loop and v is \perp to B field

- B is decreasing so B_i is in same direction (into page) and current is clockwise
Inductance (18)

- Since loop carries current through a B field there is force given by
 \[\vec{F}_B = i\vec{L} \times \vec{B} \]

- Use right-hand rule to find direction of \vec{F}_B on segments loop in B field

- Find forces, F_2 and F_3, cancel each other

- Force, F_1, opposes your force

\[\vec{F}_{app} = -\vec{F}_1 \]
Inductance (19)

- Checkpoint #3 – Four wire loops with edge lengths of either L or 2L. All loops move through uniform B field at same velocity. Rank the four loops according to maximum magnitude of induced emf, greatest first.

\[E = BLv \]

- c & d tie, then a & b tie