Lecture 33

Chapter 34 - 35 EM Waves & Images

Review

- EM waves move at the speed of light, c in free space (vacuum or air)
- Speed of light also

$$c = 3 \times 10^8 m / s$$

$$c = \frac{E_m}{B_m} \qquad c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Velocity of wave is

$$v = \frac{\omega}{k} = f\lambda$$

Intensity

$$I = S_{avg} = \left(\frac{energy/time}{area}\right)_{ave} = \left(\frac{power}{area}\right)_{ave}$$

Review

- EM waves have linear momentum and exert radiation pressure on an object
- If object totally absorbs EM wave
- If object totally reflects EM wave back along original path
- Where I is

$$I = \frac{1}{c\mu_0} E_{rms}^2$$

Review

- If E field component of waves always points same direction waves polarized
- EM waves with randomly oriented *E* fields are unpolarized
- Intensity of unpolarized light after hitting a polarizing sheet
- Intensity of polarized light after hitting a polarizing sheet

Incident light ray Unpolarized light Polarizing sheet Vertically polarized light

$$I = \frac{1}{2} I_0$$

$$I = I_0 \cos^2 \theta$$

EM Waves (27)

- Represent light waves as straight lines or rays
- If incident (incoming) light wave hits surface of different material some light will
 - Be reflected back
 - Travel through and be refracted

If incident beam is ⊥ to surface then no change in its direction

EM Waves (28)

- Define a line, the normal, which is ⊥ to surface at point where the incident beam hits the surface
- Angles relative to normal
 - Angle of incidence θ_1
 - Angle of reflection θ_1
 - Angle of refraction θ_2
- Plane containing incident ray and normal is plane of incidence

EM Waves (29)

 Law of reflection: Reflected ray lies in plane of incidence and angle for reflection is equal to angle of incidence

 Law of refraction: Refracted ray lies in plane of incidence and angle of refraction is related to angle of incidence by Snell's law

$$n_2 \sin \theta_2 = n_1 \sin \theta_1$$

 Nothing has n <1, velocity of wave in medium is always < speed of light

Wavefront Interface Refi	θ_1 Air Glass θ_2 acted ray
Medium	Index, n
Vacuum	Exactly
	1
Air	1.00029
Glass	1.52
Diamon	2 4 2

EM	Waves	(31)
n_2 s	$ in \theta_2 = n_1 s_2 $	$in \theta_1$

EM Waves (32)

- Traveling from one medium to another
 - Frequency of wave does not change
 - Wavelength and velocity do change

EM Waves (33)

- n depends on wavelength of light, except in vacuum
- Beam consists of different wavelengths, rays are refracted at different angles and spread out – chromatic dispersion
- White light consists of components of all the colors in visible spectrum with uniform intensities

Fused quartz

EM Waves (34)

- *n* for a medium is greater for shorter wavelengths (blue) than for longer (red)
- Blue light is bent more than red light

EM Waves (34)

Examples of chromatic dispersion

- White light through a prism

- Rainbow

EM Waves (35)

Checkpoint #5 – Which of these refractions are possible?

EM Waves (36)

- The angle of incidence which causes the refracted ray to point directly along the surface is called the critical angle, θ_c
- Angles larger than θ_c no light is refracted so have total internal reflection

EM Waves (37)

 Find critical angle from Snell's law where incident ray is moving from medium with n₁ to n₂

- For total internal reflection to occur n₂ < n₁
 - Will not happen if moving from air into glass

EM Waves (38)

- Reflected light is partially polarized
- If light incident at Brewster angle its reflected light is fully polarized ⊥ to the plane of incident
- Refracted light is still unpolarized

Lecture 33 (cont.)

Chapter 35 Images

Images (1)

- Real images light intersects the image point
- Virtual images light doesn't really intersect but images appears to come from that point
 - Sunny day the mirage pool of water on the road is really reflection of low section of the sky in front of you

Images (2)

- Mirror surface which reflects light in one direction instead of scattering it in many directions or absorbing it
- Plane mirror flat reflecting surface
- Extend reflected rays
 O behind mirror
- Intersect at point of image I

Images (3)

- Plane mirror virtual image I is as far behind the mirror as the object O is in front of it
- By convention, object distances p are positive, image distances i for virtual images are negative

$$i = -p$$

Images (4)

 Plane mirror – virtual image I has same orientation and height as object O

 Only portion of mirror smaller than pupil of eye is used to form images

