Lecture 38

Chapter 36 & 37
Interference & Diffraction
Review

• 3 ways for phase difference between 2 light waves to change
 – Waves travel through media of different indexes of refraction, \(n \)
 – Waves travel along paths of different lengths
 – Waves are reflected
Review

- When 2 waves interact get interference
 - If phase difference is 0 or integer # of wavelengths (1λ, 2λ, …) waves are in-phase and constructively interfere giving a bright spot or maxima
 - If phase difference is half a wavelength (0.5λ, 1.5λ, …) waves are out-of-phase and destructively interfere giving a dark spot or minima
Review

- Materials of different n
 - Different #’s of wavelengths occur in different n’s
 - Phase shift given by
 \[N_2 - N_1 = \frac{L}{\lambda}(n_2 - n_1) \]
 - Effective phase difference is decimal fraction
 - $1 \lambda = 2\pi$ radians = 360°
Review

- Different path lengths
 - Ray 1 travels distance ΔL farther than ray 2
 - Waves interfere fully constructively when
 \[\Delta L = m\lambda, \; m = 0,1,2,... \]
 - Central maximum at $m=0$, first order maxima $m=1$, second order maxima $m=2$
 - Waves interfere fully destructively when
 \[\Delta L = (m+1/2)\lambda, \; m = 0,1,2,... \]
 - First order minima $m=0$, second order minima $m=1$, third order minima $m=2$
Review

- Different path lengths
- Relate path length difference ΔL to angle with central axis θ and distance between slits d

$$\Delta L = d \sin \theta$$

- Maxima, bright spots at

$$d \sin \theta = m\lambda, \ m = 0,1,2,...$$

- Minima, dark spots at

$$d \sin \theta = (m + 1/2)\lambda, \ m = 0,1,2,...$$
Review

• Different path lengths

• Use small angle relation

\[\tan \theta = \sin \theta = \theta \]

• Distance \(y \) on screen from central maxima to maxima of order \(m \) is

 – \(D \) is distance between screen and slits, \(d \) is distance between slits

\[y = \frac{mD\lambda}{d} \]
Review

- **Reflection**
- If incident light reflected by surface with lower \(n \) no phase shift
 - \(n_1 > n_2 \), phase shift = 0
- If incident light reflected by surface with higher \(n \) phase shifted by \(\frac{1}{2} \lambda \)
 - \(n_1 < n_2 \), phase shift = 0.5\(\lambda \)
- Refracted light is not phase shifted
Review

- Phase shift from thin films
- Combine reflection and path length difference
- First find phase shift (if any) between 2 rays from reflection at top and bottom of film
- Which path length equation to use depends on the reflection phase shift and what type of interference you want, maxima or minima

\[2L = (m + \frac{1}{2}) \frac{\lambda}{n_2}, \quad m = 0, 1, 2, \ldots \]

\[2L = m \frac{\lambda}{n_2}, \quad m = 0, 1, 2, \ldots \]
Review

• Checkpoint #5 – Light reflects ⊥ from film of thickness L between 2 other media. For given index of refractions, which situations will A) give zero phase difference from reflection at film interfaces

1. If \(n_1 > n_2 \), no phase change
2. If \(n_1 < n_2 \), \(\frac{1}{2} \lambda \) phase change
• (1) \(n_1 > n_2 > n_3 \) – no phase shift either surface, phase diff = 0, in phase
• (2) \(n_1 > n_2 < n_3 \) – top surface no phase shift, bottom surface shifted \(\frac{1}{2}\lambda \), phase diff = \(\frac{1}{2}\lambda \)
• (3) \(n_1 > n_2 < n_3 \) – same as (2) phase diff = \(\frac{1}{2}\lambda \)
• (4) \(n_1 < n_2 < n_3 \) – top and bottom surface both have \(\frac{1}{2}\lambda \) phase shift, phase diff = 0, in phase
Review

• Checkpoint #5 – B) for which situations will the film be dark if $2L=0.5\lambda$ phase difference

• Reflection causes 2&3 to be out-of-phase by $\frac{1}{2}\lambda$ so additional $\frac{1}{2}\lambda$ from path length makes waves in phase so constructive and bright

• 1 & 4 are in phase by reflection so $\frac{1}{2}\lambda$ from path length makes waves out-of-phase and dark
Diffraction (1)

- Waves **diffract** (bend) if pass through an opening whose size is comparable to its wavelength.
- The narrower the slit, the greater the diffraction.
- Previous example of double-slit interference assumed slit width a much smaller than λ of incident light and we talked about 2 light rays.
Diffraction (2)

• Do we still get an interference pattern if we have only one slit?
 • Yes, see a bright central maximum and then other less bright spots on the sides (side maxima) separated by dark minima
 – Caused by interference of wavelets from same wavefront going through slit
Diffraction (3)

• **Interference** –
 – Combining waves from small number of coherent sources – double-slit experiment with slit width much smaller than wavelength of the light

• **Diffraction** –
 – Combining of large number of wavelets from single wavefront – as in single slit experiment

• **Diffraction and interference are both**
 – the result of combining waves with different phases at a given point
 – Usually present simultaneously

• Example see photo 37-14 p.902