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ELECTROSTATICS

ELECTRIC CHARGE

• Electric charge is a property of atomic particles, the electron and the proton, which make up atoms
(together with neutrons).

• The standard unit of charge is the Coulomb (C).

• Electric charge and mass of particles

Particle Electric Charge Mass
Electron −e = −1.6 · 10−19 C me = 9.11 · 10−31 kg
Proton +e = 1.6 · 10−19 C mp = 1.672 · 10−27 kg
Neutron 0 mn = 1.674 · 10−27 kg

• Law of charges: Like charges repel, and unlike charges attract.

• An electric charge q is a charge which is an integer multiple of the fundamental charge constant
e = 1.6 · 10−19 C, q = n e. Electric charge is quantized.

• The net charge of an object is the difference between the number of protons and electrons in it times
the elementary charge constant.

• Law of conservation of net charge: The net charge of an isolated system remains constant.

• Electric charge transfer is a transfer of electrons.

Charging positively: Removal of electrons Charging negatively: Addition of electrons
from an object to an object

ELECTRIC FORCE

• The mutual electrostatic forces on two point charges are equal and opposite, pointing to (away from)
the other particle for unlike (like) charges.

• Coulomb’s Law
The electrostatic force between two charges q1 and q2 separated by a distance r is:

F = k
q1 q2

r2

k = 8.99 · 109 N m2/C2

• Charges interact pairwise via Coulomb force. The superposition principle is valid:

The net force acting on any charge is the vector sum of the forces
due to each of the remaining charges in a given distribution.
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ELECTRIC FIELD

• Test charge = charge which feels the force of other charges, but exerts no force on them. (mathe-
matical construction)

• Electric field, ~E = force per unit test charge: ~E = ~F/q0.

SI-unit of the ~E-field: N/C.

• Electric field of a point charge:
— Force between two point charges: F = kQq0/r

2.
— E-field felt by test charge q0 at r due to the presence of Q is then: E = F/q0 = kQ/r2.

— Direction of ~E = direction of ~F .
— Unit positive test charge would be attracted to a negative charge. ~E-field points towards a

negative point charge and away from a positive point charge.

• Superposition of electric fields: ~F = ~F1 + ~F2 + ~F3 + ..., ~E = ~F/q0 → ~E = ~E1 + ~E2 + ~E3 + ...

• Rules for electrical field lines:
— The lines are directed pointing away from the positive and towards the negative charges.
— At any given point in space, the tangent to the line is the direction of the ~E-field at that point.
— The number of lines drawn to or from a charge is proportional to the magnitude of the charge.

• Consequences of these rules:
— In the immediate vicinity of a point charge, field lines are radially directed.
— Field lines do not intersect in a charge-free region.
— Field lines do not begin or end in a charge-free region.

• Density of field lines (number of field lines per unit area) is proportional to the ~E-field; and by
convention, the total number of field lines is proportional to the charge q.

ELECTRIC DIPOLE

• An arrangement of two equal but opposite charges q separated by a fixed distance d is called a dipole.
In a uniform field E, a fixed dipole is subject to a torque: τ = qdEsinθ. θ is the angle between the
dipole direction and the field. p = qd is the dipole moment.

• The field of a dipole along the dipole axis at large distances (z >> d) is: E = 2kp/z3

• The field of a dipole along an axis perpendicular to the dipole axis at large distances (x >> d) is:
E = kp/x3

CONTINUOUS CHARGE DISTRIBUTIONS

• The linear charge density is defined as λ = Q/L
The surface charge density is defined as σ = Q/A
The volume charge density is defined as ρ = Q/V

• The electric field along the z-axis of a charged ring is: E = kqz/(z2 + R2)3/2

• The electric field along the z-axis of a charged disk is: E = σ/2ε0(1− z/
√

z2 + R2)
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ELECTRIC FLUX AND GAUSS’S LAW

• The electric flux through a flat surface is given by: Φ = ~E ~A, where the direction of the area is given
by the normal vector of the area which is perpendicular to the surface. The magnitude of the flux is
then given by Φ = EA cos θ, where θ is the angle between the electric field and the normal vector.

• The electric flux Φ through a closed surface (Gaussian surface) is defined as: Φ =
∮ ~Ed ~A.

• Flux into an enclosed surface is negative and flux out of an enclosed surface is positive.

• Gauss’s Law: The net charge enclosed by a closed surface is equal to the flux through this surface
times ε0: qenc = ε0Φ.

• The potential energy of a point charge q in the field of another point charge Q is U = kqQ/r.

FIELD OF A CHARGED CONDUCTOR

• The field outside of a charged sphere will be the same as the field of a point charge at the center of
the sphere. The field inside of a charged conductor is zero.

• The net charge on an isolated conductor is always on the surface of the conductor. The electric field
at the surface of a charged conductor is perpendicular to the surface.

• On irregularly shaped charged conductors, the charges will accumulate more at sharp points.

E-FIELDS OF CONTINUOUS CHARGE DISTRIBUTIONS

The following formulas are valid for infinitely long lines, infinitely large areas, and spheres of radius R of
uniformly charged materials:

• Line of charge: E = λ/(2πε0r)

• Surface of an infinitely thick sheet of conductor: E = σ/ε0

• Sheet of a non-conductor: E = σ/(2ε0)

• Sheet of conductor E = σ1/ε0 (The total charge spreads out over 2 surfaces, σ1 corresponds to the
charge on one surface)

• Field between a positively and negatively charged conductor: E = 2σ1/ε0 = σ/ε (σ now corresponds
to the total charge, which is accumulated on the inside of the conductors)

• The field outside (r > R) a sphere: E = kq/r2

• The field inside (r < R) a conducting sphere: E = 0

• The field inside (r < R) a nonconducting sphere: E = kqr/R3
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ELECTRIC POTENTIAL ENERGY

• The electrostatic potential energy, U is defined as the difference in potential energy of a charge q at
two different points i and f : ∆U = Uf − Ui.

• It is equal to the work W done by the electrostatic force in transporting this charge from the initial
position i to the final position f : ∆U = −W .

• The reference point of U = 0 is at i = ∞ and thus the electrical potential energy at point f is:
U = −W .

ELECTROSTATIC POTENTIAL

• Definition: Electrostatic potential difference: ∆V = Vf − Vi = ∆U/q = −W/q

• With Ui = U∞ = 0 the potential is: V = −W∞/q.

EQUIPOTENTIAL SURFACE AND RELATION BETWEEN V AND E

• Definition of equipotential surfaces: Surfaces of constant potential.

• The electric field lines are always perpendicular to the equipotential surfaces.

• Metal surfaces are equipotential surfaces.

• From the relation dW = ~Fd~s the potential between two points separated by a distance s can be
calculated from the electric field: V = −

∫ f
i

~Ed~s

• The component of the electric field in a given direction can be calculated from the potential:
E = −∂V/∂s

POTENTIAL OF POINT CHARGES

• The potential of a single point charge is given by: V = kq/r. The potential at infinity is assumed to
be zero and this equation is valid including the sign when the sign of the charge is also included.

• Again, the superposition principle is valid, the potential of several point charges is equal to the sum
of the individual potentials: V = V1 + V2 + V3 + ... + Vn =

∑n
i=0 Vi = k

∑n
i=0(qi/ri)

• A positive charge accelerates from a region of higher potential to a region of lower potential.

• The potential due to a dipol at large distances r is given by: V = kp cos θ/r2, where p is the dipole
moment and θ is the angle between the dipole axis (pointing from the negative to the positive charge
of the dipole) and ~r.
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CAPACITORS

• The potential difference between two charged plates A and B is related to the E-field via: V = Ed.

• Definition: The capacitance C is a proportionality constant that relates q to V : q = CV or C = q/V ,
SI Unit: 1Farad = 1F = 1C/V

• Parallel capacitor: (q is the total charge on one plate): 4πkq = EA = (V/d)A ⇒
C = q/V = A/(4πkd) = ε0A/d

• Cylindrical capacitor: C = 2πε0L/(ln(b/a), where a and b correspond to the radius of the inner and
outer plate, respectively.

• Spherical capacitor: C = 4πε0ab/(b − a), where a and b correspond to the radius of the inner and
outer spheres, respectively.

• Isolated Sphere: C = 4πε0R = kR.

CAPACITORS IN PARALLEL

• The sides of two capacitors connected together are on the same potential: V1 = V2 = V . The charges
on each capacitor are: q1 = C1 V and q2 = C2 V . The total charge is : q = q1 + q2.
Therefore, the capacitance of the equivalent capacitor is:
Cp = q/V = (q1 + q2)/V = C1 + C2 ⇒ Cp = C1 + C2, or for n capacitors in parallel: C =

∑n
i Ci.

CAPACITORS IN SERIES

• If the capacitors are connected in series the two connected plates in the middle have zero net charge.
Therefore the charges on both capacitors are equal: q1 = q2 = q.
The total voltage is then q/Cs = V = V1 + V2 = q1/C1 + q2/C2 = q/C1 + q/C2 ⇒
1/Cs = 1/C1 + 1/C2, or for n capacitors in series: 1/C =

∑n
i 1/Ci.

ENERGY STORED IN A CAPACITOR

• Potential energy differences are created by transporting charge from one plate to the other.
W = V q/2 with q = CV ⇒ W = q2/(2C) = CV 2/2.

DIELECTRICS

• Dielectrics are materials composed of permanent dipoles which can be reoriented but cannot move.
The dipoles align and partially compensate the external field. With fixed charges in the capacitor,
the E-field between the plates is reduced with the dielectric present as compared to without.

• Definition: Dielectric constant, κ, κ = Cκ/C0 = E0/Eκ = V0/Vκ where E0 is the electric field without
the dielectric present, and Eκ is the field with it present.

• With the permittivity of the dielectric material ε = ε0 κ : Cκ = κC0 = ε0 κA/d = ε A/d.
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CURRENT AND CIRCUITS

ELECTRIC CURRENT

• Amount of current = amount of charge that passes per time unit through an area perpendicular to
the flow: i = dq/dt, Unit: C/s = A (Ampere).

• The current density is defined as J = i/A, where A is the cross sectional area.

• Convention: Direction of current = direction of positive charge flow. Since e− are the moving charges,
the defined direction of the current is opposite to the direction of the physical current.

• The current is related to the electron drift velocity which is amazingly small: vd = J/(ne)
It is typically /sim mm/s. ne is the charge carrier density.

• Why does current flow instantaneously? Because of the E-field which moves with speed of light,
which causes all electrons in wire to drift at the same time.

RESISTANCES

• If one connects a wire between both terminals of a battery, a current flows. The resistance is defined
as R = V/i (Ohm’s law), Unit: Ω.

• Physical reason for resistance: Scattering of the conduction electrons off obstacles in the conductor.
Ohm’s law is not generally valid, but it is a good empirical rule for most systems.

• The resistivity is defined as ρ = E/J .

• The overall resistance of a wire should be proportional to its length and inversely proportional to its
cross sectional area The proportionality constant is called resistivity, ρ.
R = ρ L/A ⇒ ρ = R A/L, Unit: Ωm

• The resistivities are temperature dependent due to thermal vibrations in the material:
ρ− ρ0 = ρ0α(T − T0).

• Resistivities are usually tabulated at room temperature, 20 ◦C.

• The conductivity is: σ = 1/ρ.

POWER DISSIPATION IN A SIMPLE CIRCUIT

• Potential drop across resistor (Ohm’s law): V = i R.

• Since charge is transported from the positive end of the load resistor to the negative end across a
potential V , it loses potential energy PEelec = V ∆q = V i ∆t. This potential energy is converted
into some other form of energy, here: heat (Joule heating).

• The power dissipated is the change in potential energy (work) per time unit:
P = ∆W/∆t = V i ∆t/∆t = V i.

• Using V = R i, we can also write for the power P = i2 R = V 2/R.
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BATTERIES

• Batteries supply a potential difference which is called an electromotive force (emf). This emf is
defined by the work dW done on a charge dq: E = dW/dq.

• Real batteries have an internal resistance r when current is drawn from the battery. This internal
resistance reduces the nominal emf according to Ohm’s law to the terminal voltage (TV) which is
given by TV = E − ir.

• Ideal batteries do not have any internal resistances.

KIRCHHOFF’S RULES

• Kirchhoff’s first rule: (Junction Rule) The sum of the currents flowing into a junction is equal to
the sum of the currents flowing out of the junction (conservation of charge).

• Kirchhoff’s second rule: (Loop Rule) The sum of the potential drops is equal to the sum of the
potential rises within a closed loop (conservation of energy).

• Resistance rule: For a move through a resistor in the direction of the current, the change in potential
is −iR, in the opposite direction it is +iR.
emf rule: For a move through an ideal emf device in the direction of the emf arrow, the change in
potential is +E , in the opposite direction it is −E .

RESISTORS IN SERIES AND IN PARALLEL

• For two resistors in series the current that flows through the circuit is the same everywhere and the
voltage drops across the resistors add up:
E = V1 + V2 = i1 R1 + i2 R2 = i R1 + i R2 = i (R1 + R2) = i Rs ⇒ Rs = R1 + R2

or for n resistors in series: Rs =
∑n

i Ri.

• For two parallel resistors the potential drop across each resistor is constant: E = V1 = V2, and the
current that flow through the individual resistors add up to the total current:
i = i1 + i2 = V1/R1 + V2/R2 = E/R1 + E/R2 = E (1/R1 + 1/R2) = E/Rp ⇒ 1/Rp = 1/R1 + 1/R2

or for n resistors in parallel: 1/Rp =
∑n

i 1/Ri.

CHARGING AND DISCHARGING A CAPACITOR

• It takes time to put charges onto a capacitor. Initally it is fast, but as more charges are on the
capacitor it becomes harder: q = CE(1− e−t/RC), i = (E/R)e−t/RC . RC is called the time constant
of the circuit.

• Discharging the capacitor is again fast at the beginning, getting slower the fewer charges are left on
the capacitor: q = q0e

−t/RC , i = −(q0/RC)e−t/RC .
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MAGNETISM

MAGNETIC FIELD

• Magnets have two poles, named North (N) and South (S). Magnets have magnetic field lines extending
from the North pole to the South pole. Two like poles repel, two unlike poles attract each other.

• The magnetic field exerts a force on a moving charge: ~FB = q~v× ~B. The magnitude of this force is
FB = |q|vB sin Φ, where Φ is the angle between the directions of the velocity and the field.

• The direction of the ~B-field is given by a Right-hand-rule:
When the fingers sweep ~v into ~B, the thumb points for positive charges in the direction of the force
~FB. Units of B: 1 Tesla (T ) = Ns/Cm = V s/m2 Other unit: 1 Gauss(G) : 1G = 10−4T

TRAJECTORY OF CHARGES IN CONSTANT B-FIELDS

• The magnetic force FB on a charge moving perpendicular to a magnetic field causes a circular motion.
It is a centripetal force: Fc = m v2/r. Therefore: Fm = Fc ⇒ q v B = m v2/r.

• Solving for the radius of the orbit: r = m v/(q B). The frequency is then fosc = 1/T = q B/(2π m).

HALL EFFECT

• Moving electrons in a wire (= current) can be deflected by a magnetic field which produces a (Hall)
potential difference. In the equilibrium (FE = FB) it is possible to measure the charge density
n = Bi/(V le), where l is the thickness of the strip of wire.

FORCE ON A CURRENT

• Current consists of moving charges. The magnitude of the magnetic force on a wire of length L with
current i due to a magnetic field B is given by ~FB = i~L × ~B, FB = iLB sin θ, where θ is the angle
between the wire (current) and the magnetic field.

TORQUE ON A CURRENT CARRYING COIL

• Assume a coil in a magnetic field ~B. For one loop of the coil: The forces on the current in pivoted
part of the loop are equal and in opposite directions ( ~B ⊥~i) and thus there is no net torque.

• The force on the current I in the non-pivoted side of the loop (width a) is F = iaB.

• The torque ~τ on one side of the loop is τ = (b/2)F sin θ,
where θ is the angle between the normal to the loop and the magnetic field.

• Thus, the total torque on the loop (the two opposite sides add up) is
τ = (b/2)iaB sin θ + (b/2)iaB sin θ = iAB sin θ where the area of the loop is A = ab.

• When the coil consists of N loops the total torque is τ = NiAB sin θ.

• The magnetic moment of the coil is defined as: µ = NiA and thus the torque is given by ~τ = ~µ× ~B.
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MAGNETIC FIELD DUE TO A CURRENT

• The magnetic field d ~B at a distance r from a wire due to a current i inside a piece d~s of the wire is
given by Bio-Savart’s law: d ~B = µ0id~s× ~r/(4πr3)
The constant: µ0 = 4π · 10−7 Tm/A is called the permeability of free space.

• Magnetic field of a long straight wire at a distance r from the wire: B = µ0i/(2πr)

• Magnetic field inside of a long straight wire with radius R at a distance r from the center: B =
µ0ir/(2πR2)

• Magnetic field at a center of a circular arc: B = µ0iΦ/(4πR), where Φ is measured in radians.
Thus the magnetic field at the center of a current loop is: B = µ0i/(2R)

• Magnetic field of a coil along the symmetry axis z through the center: B = µ0~µ/(2πz3),
where µ = NiA is the magnetic dipole moment of the coil and N is the number of turns in the coil.

• Right Hand Rule: The direction of the field curles around with the fingers of the right hand when
the thumb points in the direction of the current.

FORCE BETWEEN TWO WIRES

• The force on a wire which carries a current i1 due to the magnetic field of another (parallel) wire
with current i2 (B = µ0i2/(2πd)) is given by: F = µ0Li1i2/(2πd).
d is the distance between the two wires and L is the length of the wires.

• If the current in both wires are in the same direction, the force is attractive, and if the currents are
in opposite directions the force is repulsive.

MAGNETIC FIELD OF A SOLENOID AND TOROID

• A solenoid is a long straight coil of tightly wound wire. The magnetic field inside the solenoid is
directed along the center of the coil: B = µ0in, where n is the number of turns per unit length.
Thus, if N is the total number of turns of the solenoid of length L, then n = N/L.

• A toroid is a solenoid bent into the shape of a doughnut. The magnetic field at the center of the
toroid is: B = µ0iN/(2πr), where N is the total number of turns and r is the radius of the toroid.

AMPERE’S LAW

• For certain situations which involve symmetries it is easier to use Ampere’s law rather than Biot-
Savart’s law. The integral of the scalar product of the magnetic field ~B and pathsegment d~s over a
closed imaginary loop is proportional to the enclosed current:

∮ ~Bd~s = µ0ienc.
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INDUCTION

• A current I generates a magnetic field B. Can a magnetic field also generate a current? Yes and No.
A constant (in time) magnetic field does not generate a current, but changes in the field do.

• Faraday’s observations: An emf can be generated in a loop of wire by:
(i) holding it close to a coil (solenoid) and changing the current in the coil.
(ii) keeping the current in the coil steady, but moving the coil relative to the loop.
(iii) moving a permanent magnet in or out of the loop.
(iv) rotating the loop in a steady magnetic field.
(v) changing the shape of the loop in the field.

• The Magnetic flux is defined as ΦB =
∫ ~Bd ~A. If B is constant over the area, then the flux is given

by ΦB = BA cos θ. θ is the angle between ~B and ~A, the “normal” to the surface.

• A change in the magnetic flux produces a potential difference (and via Ohm’s law a current) in a
coil: E = −NdΦB/dt.
Φ is the flux through the coil and N is the number of turns of the coil.

• Thus, if B is constant within the coil: E = −Nd(BA cos θ)/dt. In most cases, only one variable
depends on the time:
(1) A, θ constant: E = −NA cos θdB/dt
(2) B, θ constant: E = −NB cos θdA/dt
(3) A, B constant: E = −NABd(cos θ)/dt

• Why the negative sign? Lenz’s law: An induced emf gives rise to a current whose magnetic field
opposes the change in flux that produced it.

• The magnitude of the emf of a moving conductor in a perpendicular magnetic field is given by:
E = BLv, where L is the length of the conductor and v is the velocity (perpendicular to the field) of
the conductor (v = dx/dt).

• Faraday’s law of induction can also be expressed in terms of an electric field:
∮ ~Ed~s = −dΦB/dt.

INDUCTANCE AND SELFINDUCTION

• The inductance is defined as L = NΦ/i, Units: 1 henry = 1 H = 1 Vs/A.

• The inductance per unit length of a solenoid is L/l = µ0n
2A.

• A changing current in a coil generates a self-induced emf in the coil: EL = −Ldi/dt.

• An RL-circuit consists of an inductor and a resistor in series: Ldi/dt + Ri = E . The current rises
according to i = E/R(1 − exp(−t/τl)) where τL = L/R is the inductive time constant. After a
connection is broken the current decreases as i = i0exp(−t/τl).

• The energy stored in an inductor is given by UB = Li2/2.
The energy density of a coil is given by uB = B2/(2µ0).

• The mutual inductance between two coils is defined as M and E2 = −Mdi1/dt and E1 = −Mdi2/dt.
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MAGNETIC MATERIALS

• Microscopic origin: Atoms have small magnetic moments (elementary magnetic dipoles). In ferro-
magnetic materials (iron, nickel . . .) these magnetic moments interact so strongly that the dipoles
spontaneously align. Thus the material forms one large magnetic dipole → magnet.

• Inserting materials into a magnetic field can polarize the material and create a magnetic dipole
moment. The total magnetic field can then be much stronger as it is the sum of the external field
and the magnetisation of the ferromagnetic material: B = Bext + BM .

AMPERE-MAXWELL’S LAW AND DISPLACEMENT CURRENT

• Just as a changing magnetic flux creates an electric field (Faraday’s law, see page 10 of the lecture

notes) a changing electric flux can create a magnetic field:
∮ ~Bd~s = µ0ε0dΦE/dt (Maxwell’s law).

• Thus, a magnetic field can be created by a current or by a changing electric field, which combines
Ampere’s and Maxwell’s law:

∮ ~Bd~s = µ0ε0dΦE/dt + µ0ienc.

• A displacement current can be defined as id = ε0dΦE/dt, and then the Ampere-Maxwell law can be

written as
∮ ~Bd~s = µ0i, with i = ienc + id.

GAUSS’ LAW FOR MAGNETIC FIELDS

• In analogy to Gauss’ law for electric fields, it also can be written for magnetic fields: ΦB =
∮ ~Bd ~A = 0.

• This means that the net magnetic flux through an enclosed surface is always zero, or: A magnetic
monopole does not exist.

MAXWELL’S EQUATIONS

• The basic laws combining electricity and magnetism are Maxwell’s equations:∮ ~Ed ~A = q/ε0

∮ ~Bd ~A = 0∮ ~Ed~s = −dΦB/dt
∮ ~Bd~s = µ0ε0dΦE/dt + µ0ienc

LC OSCILLATOR

• The total energy stored in an LC oscillator is the sum of the energy stored in the capacitor
UE = q2/(2C) and the energy stored in the inductor UB = i2L/2.

• The total energy is conserved and thus dU/dt = 0.

• The solution to the resulting differential equation is: q = Qcos(ωt + φ) and i = Isin(ωt + φ), where
I = ωQ and ω = 1/

√
LC.

• The total energy is U = Q2/(2C), UE = Q2/(2C) cos2(ωt + φ) and UB = Q2/(2C) sin2(ωt + φ).
circuit.
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RLC OSCILLATOR

• Now energy is dissipated in the resistor and thus dU/dt = −i2R.

The solution is now: q = Qe−Rt/2L cos(ω′t + φ) with ω′ =
√

ω2 − (R/2L)2.

The total energy decreases as U = Q2/(2C)e−Rt/L.

R, L, OR C IN AN AC CIRCUIT

• If we connect a resistor, a capacitor, or an inductor to an external ac (alternating current) emf,
E = Em sin(ωdt), ωd is called the driving frequency. The voltage drop across the element (x = R, C
or L) is then vx = Vx sin(ωdt).

• The current can then be calculated with ix = Ix sin(ωdt − φ), where φ corresponds to the phase
difference between the voltage and the current.

• The equivalence of a resistance for a capacitor and an inductor is the reactance. The capacitive
reactance is XC = 1/(ωdC) and the inductive reactance is XL = ωdL.

Element Symbol Resistance Phase of Phase angle Amplitude
or Reactance Current φ Relation

Resistor R R in phase 0◦ VR = IRR
Capacitor C XC = 1/(ωdC) leads vC (ICE) −90◦ VC = ICXC

Inductor L XL = ωdL lags vL (ELI) 90◦ VL = ILXL

RLC CIRCUIT

• In an RLC circuit the instantaneous voltages have to add up to the emf: E = vR + vL + vC .

• The amplitudes can be calculated from the vector sum of the phasors. Thus the maximum current

is given by I = Em/Z where Z =
√

R2 + (XL −XC)2 is the impedance of the circuit.

• The phase constant is defined as tan φ = (XL −XC)/R.

• The current has a maximum when the impedance has a minimum, i.e. Z = R. This occurs at the
resonance frequency ωd = ω = 1/

√
LC.

• The average power dissipated in an ac circuit is Pav = I2
rmsR, where the rms current is Irms = I/

√
2.

The definition of an rms emf as Erms = Em/
√

2 yields also: Pav = ErmsIrmsR/Z = ErmsIrms cos φ.

TRANSFORMERS

• Transformers consist of two coils (primary and secondary) wound on the same iron core with different
number of turns. The same magnetic flux is then in both coils:
Vp = −Np∆φB/∆t and Vs = −Ns∆φB/∆t → Vs/Vp = Ns/Np.
The currents are then related via: Is/Ip = Np/Ns.

• The equivalent resistance of the coil in the primary circuit is given by Req = (Np/Ns)
2R, where R is

the resistance in the circuit of the second coil.
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ELECTROMAGNETIC WAVES

DEFINITION OF EM-WAVES

• The electric and magnetic field produced with an LC oscillator connected to an antenna in the z
direction can be described with wave equations (at large distances):
E = Em sin(kx− ωt) and B = Bm sin(kx− ωt).

• The electric and magnetic fields are always perpendicular to the direction of travel. It is a transverse
wave. The electric field is always perpendicular to the magnetic field.

• The cross product ~E × ~B always gives the direction of the wave. The electric and the magnetic field
are in phase and vary with the same frequency.

• The speed of all electromagnetic waves is given by: c = 1/
√

µ0ε0, Em/Bm = c, c = 299, 792, 458m/s.

• The rate of energy transport per unit area is called the pointing vector and is given by: S = ~E× ~B/µ0,
S = E2/(cµ0).

• The intensity of the wave is defined as I = S̄ = E2
rms/(cµ0), where Erms is the root-mean-square

value of the electric field: Erms = Em/
√

2. The intensity as a function of distance from the source is
given by: I = Ps/(4πr2), where Ps is the power emitted by the source.

• The radiation pressure of a wave is defined as Pr = I/c for total absorption and Pr = 2I/c for total
reflection.

POLARIZATION

• The electric field component of a wave parallel to the polarizing direction of a polarizer is passed
(transmitted) by the polarizer, the component perpendicular to it is absorbed.

• The intensity of an unpolarized wave after a polarizer is reduced by a factor of 2: I = I0/2.

• The intensity of a polarized wave going through a polarizer is given by I = I0 cos2 θ, where θ is the
angle between the polarization direction of the wave and the polarizer.

REFLECTION AND REFRACTION

• For electromagnetic waves reflected off surfaces the law of reflection is valid: θi = θr where the
incident i and reflected r ray (wave) is measured with respect to the normal of the surface.

• For transparent materials the wave is refracted: n1 sin θ1 = n2 sin θ2, where n is called the index of
refraction for a given material, and 1 and 2 correspond to the incoming and refracted ray, respectively.

• When light (em-wave) travels from an optical denser medium into an optical less dens medium all of
the light is reflected at the boundary between the two media when the incoming angle is larger than
a critical angle θc: sin θc = n2/n1,(n1 > n2).

• Reflected and refracted light is partially polarized. For a certain angle the reflected light is completely
polarized (Brewster angle): tan θB = n2/n1.

13
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GEOMETRIC OPTICS

MIRRORS

• The object distance p is located in front of the mirror. Plane mirrors form a virtual image behind
the mirror at a distance i (= image distance). The mirror image is upright: p = −i.

• The magnification m is defined as the ratio of the image height hi over the object height ho: |m| =
hi/ho and is also given by m = −i/p. The magnification of a plane mirror is one.

• All spherical mirrors have focal points. The focal length is given by f = r/2, where r is the radius
of curvature of the mirror.

• The mirror equation relates the focal length, object and image distances: 1/f = 1/p + 1/i.
Real images are always on the same side of the mirror as the object.

LENSES

• Symmetric spherical lenses have two symmetrically positioned focal points, one on each side. The
distance between the center plane of the lens and the focal point is the focal length, f .

• The mirror equation is also valid for thin lenses: 1/f = 1/o + 1/i,
and the magnification is also m = −i/o.
Real images are always formed on the other side of the lens as the object.

• For lenses with two different curvatures on both sides the focal length can be calculated with the
lens makers equation: 1/f = (n− 1)(1/r1− 1/r2). When the object faces a convex refracting surface
r is positive. When it faces a concave surface it r is negative.

• For a system of several lenses (or mirrors) the total magnification is given by the product of the
individual magnifications: M = m1m2m3...

MIRRORS AND SINGLE LENSES

Thin Lenses diverging converging

Location Object o (all +) any value o<f 2f>o>f o=2f o>2f
Image i |i| < |f| any value i > 2f i=2f 2f>i>f

Image relative size smaller bigger bigger equal smaller
type real/virtual virtual virtual real real real

erect/inverted erect erect inverted inverted inverted
focal length f − + + + +

Signs image position − − + + +
magnification + + − − −

Spherical Mirrors convex concave
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WAVE OPTICS

WAVEFRONTS AND REFRACTION

• Points of constant phase are called wavefronts. Wavefronts striking a surface reflect according to
θi = θr. The velocity of a wave is given by the frequency and wavelength: v = fλ.

• When a wave enters a medium with a different index of refraction n the frequency does not change
but the velocity does: n = c/v, where c is the speed of light in vacuum (air) and v is the velocity of
light inside the medium. The wavelength also changes: λn = λ/n

COHERENT LIGHT AND INTERFERENCE

• Coherent light is light emitted with one particular phase. Conventional light is produced by emission
from individual atoms with random phases and is therefore incoherent. LASERs are coherent.

• If we split a light beam of a fixed wavelength into two beams, then they will interfere constructively
or destructively depending on the pathlength difference ∆L:
Constructive Interference: ∆L = mλ with m = 0, 1, 2, . . .
Destructive Interference: ∆L = (m + 1/2)λ with m = 0, 1, 2, . . .

DOUBLE-SLIT INTERFERENCE

• Monochromatic light on a mask with two thin slits which are separated by a distance d will produce
an interference pattern:
Constructive interference (bright fringes): d sin θ = mλ m = 0, 1, 2, . . .
Destructive interference (dark fringes): d sin θ = (m + 1/2)λ m = 0, 1, 2, . . .

• If D is the distance between screen and the slits, then the location of maxima and minima on the
screen with respect to the central maximum is given by ym = D tan θm = D sin θm = mDλ/d. The
approximation tan θ = sin θ = θ (in radians) is valid for small angles.

• The intensity I on the screen as a function of the angle θ is given by I = 4I0 cos2(φ/2), where I0 is
the intensity of a single slit and φ = (2πd/λ) sin θ.

THIN-FILM INTERFERENCE

• Light incident on a thin film reflects partly from the front surface, and enters partly the glass which
is then reflected from the back surface. Since both light beams come from the same source, they
have a fixed phase relationship which depends on the difference in path lengths.

• In the medium, the wavelength changes from λ to λ2 = λ/n2. In addition, if light is reflected by a
surface to a medium with a higher n, its phase changes by 180◦, and if light is reflected on a surface
to a medium with lower n, the phase remains unchanged.

n1 < n2 > n3 or n1 > n2 < n3 n1 < n2 < n3 or n1 > n2 > n3

Constructive Interference 2L = (m + 1/2)λ/n2 2L = mλ/n2

Destructive Interference 2L = mλ/n2 2L = (m + 1/2)λ/n2
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SINGLE SLIT DIFFRACTION

• There is no fundamental difference between diffraction and interference.

• One talks of diffraction when there are many waves involved in the interference instead of only two.

• If one illuminate a thin slit with a beam of light one observes in addition to the central bright spot,
other (much less) bright spots on the sides, separated by interference minima. This pattern is due
to interference between the light-wavelets going through the slit.

• Angles for diffraction minima: mλ = a sin θ m = 1, 2, 3, . . . where a is the slit width.

• Note: m = 0 is missing in these formulas – The bright central maximum is located there. The
intensities of the noncentral maxima are much less than that of the central maximum. The width of
the central maximum is twice that of the noncentral maxima.

• The intensity I on the screen as a function of the angle θ is given by I = Im(sin α/α)2, where Im is
the maximum intensity which occurs at the center and α = φ/2 = (πa/λ) sin θ.

DIFFRACTION BY A DOUBLE SLIT

• For a double slit with finite slit widths a the intensity is given by a combination of the single slit
diffraction and the double slit interference: I = Im(cos2 β)(sin α/α)2, with β = (πd/λ) sin θ and
α = (πa/λ) sin θ, where d is the distance between the two slits and a is the width of the slits.

DIFFRACTION GRATING

• A diffraction grating is a mask containing a very large number of parallel slits at equal distances d.

• Waves from two neighboring slits will be in phase whenever: sin θ = mλ/d m = 0, 1, 2 . . .

• In the two-slit interference, destructive interference would only be given at exactly the midpoint of
two consecutive maxima (path difference = λ/2). For a diffraction grating, there are many more
possible conditions of destructive interference. Thus there are sharp maxima at angles given by the
above equation, and between them, there is destructive interference.

• The number of slits is by one larger than the number of secondary minima between primary maxima.

• The interference pattern of the slit separation and the individual slit widths add up to the total
interference pattern.
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