Physics 820 homework due Mon Nov 11

Reading: Chapters 6, 7.1-6

Problems:

2. For the system in problem 6-12 in Goldstein, determine the particle positions as a function of time, if, at \(t = 0 \), (a) the displacements and the velocity of the second particle are zero while the first particle moves at a velocity \(v \), (b) the velocities and the displacement of the second particle are zero while the first particle is displaced by \(+d \). (c) Find the general solution of the equations of motion if the particles get subjected to friction forces proportional to velocities, with a proportionality coefficient \(\nu \).

3. A mass \(m \) is suspended from a support by a spring with spring constant \(m \omega_1^2 \). A second mass \(m \) is suspended from the first by a spring with spring constant \(m \omega_2^2 \). A vertical harmonic force \(F_0 \cos \omega t \) is applied to the upper mass. Find the steady-state motion for each mass. Examine what happens when \(\omega = \omega_2 \).

![Diagram of two masses connected by springs with forces applied.](image)

5. Goldstein, Problem 7-7.