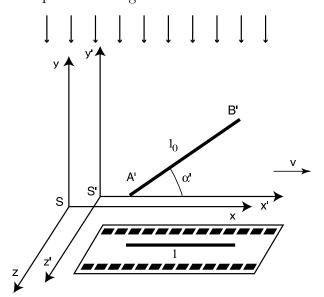
3. Goldstein, Problem 7-21.

2. Goldstein, Problem 7-19.


4. Goldstein, Problem 7-23.

5. Goldstein, Problem 7-25.

Reading: Chapters 7, 8.1

Problems:

1. The coordinate axes of two inertial frames S and S' are aligned, as shown. The frame S'moves at a speed v in the +x direction relative to S. A rod of proper length ℓ_0 is at rest in the x'y' plane in S', at an angle α' relative to the x' axis. As the rod passes by the photographic film at rest in the xz plane in S, a short flash of light is emitted in S, with rays perpendicular to the film, as marked by the short arrows in the figure. (a) What track length ℓ will the rod leave on the film? Can ℓ be equal to or longer than ℓ_0 ? (b) If the rod were at rest in S, at what angle β would it need to be inclined, to the x axis, to leave such a track? (c) At what actual angle α is the rod inclined relative to the x axis in S? (d) For what angle α' , will only the tip of the rod get recorded on the film?

