Physics 820 homework due Mon Oct 7

Reading: Chapters 3.7-11, 4.1-7

Problems:

1. A proton of energy 4 MeV scatters off a second proton at rest. One proton comes off at an angle of 30° in the lab system. What is its energy? What is the energy and scattering angle of the second proton?

2. Show that the drag force on a satellite moving with velocity \(v \) in the earth’s upper atmosphere is approximately \(f_D = \rho A v^2 \) where \(\rho \) is the atmospheric density and \(A \) is the cross-sectional area perpendicular to the direction of motion. Assume that the air molecules are moving slowly compared with \(v \) and that their collisions with the satellite are completely inelastic, i.e. the whole kinetic energy of relative motion is converted into heat.

3. From the last subject exam:
 Discuss the 2-dimensional motion of a particle moving in an attractive central-force described by the force law \(f(r) = -k/r^\alpha \), where \(k \) is positive and \(3 > \alpha > 2 \).
 (a) Write down the equations of motion in polar coordinates;
 (b) Show how conservation laws can be used to derive the formal equation for the orbit of motion;
 (c) Describe the nature of the orbits for various possible initial energies and angular momenta.
 (Graphical methods can be very useful.)

5. Goldstein, Problem 4-6.