Physics 831 - 2002 Statistical Physics Problem Set 7

- 1. Show that the chemical potential of an ideal gas can be written as $\mu(P,T) = kT \log P + \chi(T)$ and find the function χ for an atomic gas (4 pt)
- 2. Starting with the expression for the partition function, show that the total pressure of a mixture of ideal gases is the sum of partial pressures of each gas. (4 pt)
- 3. Consider a system in chemical equilibrium. There are several species X_i which react with each other, so that the reaction can be written in the form $\sum_i \nu_i X_i = 0$ (for example, for the reaction $2H_2 + O_2 \rightleftharpoons 2H_2O$ the coefficients are $\nu_{H_2} = 2, \nu_{O_2} = 1, \nu_{H_2O} = -2$). From the condition that the Gibbs potential of the mixture is minimal find the interrelation between the chemical potentials of the species in equilibrium. (4 pt)
- 4. Show that, if reacting species are ideal gases with densities n_i , then there holds a relation $\prod_i n_i^{\nu_i} = K(P,T)$, where P is the total pressure (the law of mass action). Calculate the function K in terms of P and the functions $\chi(T)$ of the Problem 1. (4 pt)
- 5. For a quantum system with a density operator ρ , find the probability distribution over momenta $p \equiv p_1, \ldots, p_{3N}$ (5 pt)
- 6. Find the energy spectrum of a particle of a mass m in a large 3-dimensional box, with the potential $U(\mathbf{r}) = 0$ for \mathbf{r} inside the box $(0 \le x \le L_x, 0 \le y \le L_y, 0 \le z \le L_z)$, and $U(\mathbf{r}) = \infty$ for \mathbf{r} outside the box. Find the number of states within an energy interval ΔE around the energy $E \gg (\hbar^2/2m) \sum_i L_i^{-2}$ (assume that there are many states within ΔE , but that $\Delta E \ll E$). (5)

The problems are from Kerson Huang, *Statistical Mechanics*, 2nd edition, (Wiley, NY 1987).