

Homework Problems

1. Which force, electromagnetic(**E**), gravitational(**G**), weak nuclear(**WN**) or strong nuclear(**SN**), is primarily responsible for the following actions:

falling from a tree. **G**

pressurizing a balloon. _____

orbiting of planets. _____

dissolving sugar in water. _____

exploding of a firecracker. _____

coloring of paints. _____

fusion of Deuterium in the sun. _____

melting of an ice cube. _____

ebbing of the tide. _____

ringing of a bell. _____

burning of a candle. _____

breathing the air. _____

heating a TV dinner in a microwave oven. _____

smelling a flower. _____

cycling of ATP & ADP in the body. _____

flying a jet plane. _____ and _____

air-conditioning a room. _____

freezing of ice cream. _____

firing of a gun. _____

decay of the isotope Carbon-14 _____

recording on an audio tape. _____

fertilizing an egg. _____

2. What is the common name for the electromagnetic forces generated by an object when it is stretched from its ends? _____. In addition to the ends of the object, where else are these forces active? _____.

3. What is the name of the electromagnetic forces generated by an object in response to squeezing? _____. In addition to the ends of the object, where else are these forces active? _____.

4. As shown above, the atoms along one edge of a bar, $l = 10.00$ cm long, are spaced $d = 7.130 \times 10^{-9}$ cm apart. Use the relationship, $l = nd$, between the length l , and spacing, d , between the atoms, to determine how many atoms, n , are located along the edge of the bar. (use scientific notation with 4 significant digits in calculations, 3 in the expressed answers, and show your work below).

The number of atoms along the length is _____.
 Use the relationship again to answer the next few questions. (4 significant digits when available in the calculations, 3 in the expressed answers; and show your work).

When stretched along its length by, $S = 1.00 \times 10^{-2}$ cm, for a new total length, $L = l + S$, what is the new atomic spacing, D , along the object?

The new spacing along the length, $D = \underline{\hspace{2cm}}$.

Along one edge of the stretched object, how many atoms lie in the region extending beyond the old length?

The number beyond the old length, $n_b = \underline{\hspace{2cm}}$.

Along one edge of the stretched object, how many atoms are within the old length?

The number within the old length, $n_w = \underline{\hspace{2cm}}$.

Answer the questions above again, considering the number of atoms within the volume, and not just along one edge, if it has a width and height of 1cm each.

The number of atoms in the bar is $\underline{\hspace{2cm}}$.

The new spacing along bar's length is $\underline{\hspace{2cm}}$.

The number beyond the old bar length is $\underline{\hspace{2cm}}$.

The number within the old bar length is $\underline{\hspace{2cm}}$.

5. In an atom with a diameter, 1×10^{-10} m, what fraction of the volume is occupied by the nucleus with a diameter 1×10^{-14} m? ($V = \frac{4}{3}\pi r^3$, for a sphere, where $r = \text{diameter}/2$.)

The nucleus occupies (fraction) $\underline{\hspace{2cm}}$ of the volume.

6. What happens to an object that is elastically (see text for the definition) distorted when the distorting forces are removed? An object will $\underline{\hspace{2cm}}$ when the forces elastically distorting it are removed.

7. Which of the following solids in normal use **do not** behave elastically?

beach sand, a guitar string, a drum stick, a concrete walkway,
 the wing of an airplane, an igloo, ice cream, an accordion,
 a banana, a feather pillow, a tooth pick, an eyelash.

List 5 other solid objects that **do** behave elastically in normal use.

8. True or false: when balanced forces act on my body I don't feel them.

9. True or false: no internal forces act on the atoms in an undistorted object.

10. How does a neutral object obtain a positive charge? _____

11. Maxwell determined that light combined the effects of these two (previously thought to be very different) forces: _____ and _____.

12. (Don't answer this question without first reading the discussion of the Michelson and Morley experiment in section B of Chapter 1) If I compare the speed of light measured while running toward its source to a measurement standing at rest, does the measured speed change?

The speed of light (*does or does not*) change.

On the Earth, does the measured speed of a car depend on the speed of the observer?

The speed of a car (*does or does not*) change.

Who developed the single theory that can explain both phenomena? _____

13. What are the two conditions that must be met by a new theory of nature before it is accepted and replaces an existing theory?

- 1.
- 2.

14. What occurs in a battery to move electrons from one pole of the battery to the other?

See section C of Chap. 1, for a discussion of batteries.

_____ reactions move electrons from the + pole to the - pole.

15. From information given in Lecture 1, how many oxygen atoms are contained within a molecule of oxygen gas? _____.

16. Compare the chemical formulae for water and oxygen molecules, and describe what must happen to oxygen molecules when hydrogen gas (H_2) is burned to form water molecules (see text)? _____.