Quiz #4: Huston’s lecture, Feb. 27, 2002

1. For an inductor \(L \) and capacitor \(C \), which answer is correct?
 (a) For \(L \), \(\Delta v \) lags \(i \); and for \(C \), \(i \) leads \(\Delta v \).
 (b) For \(L \), \(\Delta v \) leads \(i \); and for \(C \), \(i \) leads \(\Delta v \).
 (c) For \(L \), \(\Delta v \) leads \(i \); and for \(C \), \(i \) lags \(\Delta v \).
 (d) For \(L \), \(\Delta v \) lags \(i \); and for \(C \), \(i \) lags \(\Delta v \).
 (e) None of the above is correct.

Use the phrase: “ELI the ICE man”

2. For a series \(RLC \) circuit, you are given that the impedance \(Z = 15 \) \(\Omega \) and that \(R = 8.0 \) \(\Omega \). If the rms voltage across \(R \) is \(\Delta V_R = 7.0 \) V, compute the rms voltage across the whole circuit, \(\Delta V \).

 (a) 7.0 V
 (b) 9.4 V
 (c) 11.7 V
 (d) **13.1 V**
 (e) 14.4 V

 \[
 \begin{align*}
 &\text{Given } \Delta V = I \cdot Z. \\
 &\text{Note: } I = \frac{\Delta V_R}{R} \\
 &\Delta V = \left(\frac{\Delta V_R}{R}\right) \cdot Z = \left(\frac{7.0 \text{V}}{8.0 \Omega}\right)(15 \Omega) = 13.1 \text{ V}
 \end{align*}
 \]