Physics 410-2002
 Thermal Physics

Problem Set 1

This problem set is simple. Take advantage of it!

1. Consider a particle of mass m confined in a cubic box of size L. The potential energy has the form

$$
U(x, y, z)=\left\{\begin{array}{c}
0, \quad 0<x, y, z<L \\
\infty, \quad \text { otherwise }
\end{array}\right.
$$

Find the 4 lowest energy levels in Fig. 1.2 of the textbook, p. 9 (5 pt). Consider a particle in a square box of size L. Find the lowest 4 energy levels and their multiplicities. (4 pt)
2. Flip a coin N times. Prove that the probability that heads turn up n times is

$$
p_{n}=2^{-N} \frac{N!}{n!(N-n)!}, \quad n=0,1, \ldots, N
$$

(5pt).
3. The probability density for a classical molecule of mass m to have velocity v in a given direction is

$$
p(v)=C \exp \left[-m v^{2} / 2 k_{B} T\right]
$$

where T is temperature and k_{B} is the Boltzmann constant. Find the constant C (5 pt). Find the probability for a molecule to have velocity lying between $\left(k_{B} T / m\right)^{1 / 2}$ and $3\left(k_{B} T / m\right)^{1 / 2}$ (6 pt).

You need to have 20 points out of 25 (5 points are extra credit).

