Physics 410 - 2002

Thermal and Statistical Physics

Monday, 6:10 - 7:00 p.m.; Wednesday, Friday, 4:10 - 5:00 p.m., 120 PA

Instructor: Mark Dykman, 203A PA, ph. 353-4861 (o)

e-mail: dykman@pa.msu.edu

Office hours: 3:00 - 3:50 p.m. Tuesday, and by appointment

Grader: He Lin, 324 PA (to be changed)

e-mail: lin@pa.msu.edu

Office hours: 8:00 – 9:00 p.m. Monday, and by appointment

Required Textbook: C. Kittel and H. Kroemer *Thermal Physics*, 2nd edition

(Freeman, NY 1997).

Optional textbook: L.D. Landau and E.M. Lifshitz, Statistical Physics,

3rd edition, Part 1 (Butterworth-Heinemann, Oxford 1999).

Grading Scheme: weekly problem sets — 30%

two one hour midterm exams $-2 \times 15\%$ a two hour final exam -40%.

The final grade will be calculated from the sum of the appropriately weighted percentage for each category, not from grades for each category. There will be extra credit problems on the exams.

Home assignments will be given on Wednesdays, and are due a week from the day they are given; late assignments will not be accepted, generally.

Exams: First midterm: February 18

Second midterm: April 10

Final exam: May 1, 5:45 to 7:45 p.m.

You will be allowed to bring one sheet of notebook paper to use on the exams. The exams will *not* be of the multiple-choice type.

Schedule conflicts: I will be out of town the week of Mar. 15-19, and a part of the week of Mar. 22-26. I will arrange for a replacement. Alternatively, we can reschedule the lectures. We will have to find a convenient time or to work later for a couple of days.

Good luck!

Physics 410 - 2002

Tentative Schedule

Month	Day	Topic	Chapters
Jan	7 - 11	Introduction. Binary systems	1
Jan	14 - 25	Probability. Average values. Entropy. Laws of Thermodynamics	2 2
Jan Feb	28, 30 1 – 8	Canonical ensemble. Free energy. Ideal gas.	3 3
Feb	8 - 15	Harmonic oscillator. Black body radiation.	3, 4
Feb	18	First Midterm Exam	
Feb	20 - 27	The chemical potential. The grand canonical ensemble	5
Mar	1	Fermi-Dirac distribution.	6, 7
Mar	4 - 8	Spring break	
Mar	11	No lecture	
Mar	13, 15	Ground state of Fermi gas.	6, 7
Mar	20	Extra Midterm Exam	
Mar	23-27	Bose-Einstein distribution. Classical ideal gas.	6, 7
Mar	29	Heat and work	8
Apr	1 - 8	Engines and refrigerators	8
Apr	10	Second Midterm Exam	
Apr	12 – 17	Gibbs free energy. Chemical reactions and phase transformations.	9, 10
Apr	20 - 26	Kinetic theory.	14
May	1	Final Exam	