PHY-852 QUANTUM MECHANICS II Homework 5, 30 points February 13 - 20, 2002 Hydrogen atom, spherical well and harmonic oscillator. Reading: Merzbacher, Chapters 11 and 12.

- 1. /6/ Consider a particle of mass m in the potential $U(r) = -U_0$ for r < aand U = 0 for r > a. Find the values of the depth U_0 corresponding to the appearance in the well of new levels with orbital momentum l = 1.
- 2. /12/a. Show that the Hamiltonian of a particle of mass m in a spherically symmetric potential U(r) can be presented in the form

$$\hat{H} = \frac{\hat{p}_r^2}{2m} + \frac{\hbar^2 \hat{\mathbf{l}}^2}{2mr^2} + U(r)$$
(1)

where the radial momentum $\hat{p}_r = -i\hbar(1/r)(\partial/\partial r)r$ is canonically conjugate to the radial coordinate \hat{r} . Derive the Heisenberg operator equations of motion for \hat{r} and \hat{p}_r .

b. Show that for an operator \hat{O} without explicit time dependence the expectation value $\langle d\hat{O}/dt \rangle = 0$ in any state of the discrete spectrum. Using $\hat{O} = \hat{r}^q$ derive the relation

$$\langle p_r r^{q-1} \rangle = -\frac{i\hbar}{2} (q-1) \langle r^{q-2} \rangle.$$
⁽²⁾

c. Taking $\hat{O} = \hat{p}_r \hat{r}^{q+1}$ and eliminating \hat{p}_r^2 and $d\hat{p}_r/dt$ with the help of the Hamiltonian and equations of motion for \hat{p}_r , obtain the recurrent relation for the Coulomb potential $U(r) = Ze^2/r$ and stationary state with quantum numbers n and l

$$2E_{nl}\langle r^q \rangle_{nl} + Ze^2(2q+1)\langle r^{q-1} \rangle_{nl} + \frac{q\hbar^2}{m} \left[\frac{q^2 - 1}{4} - l(l+1) \right] \langle r^{q-2} \rangle_{nl} = 0.$$
(3)

d. Taking in (3) suitable values of the parameter q, find the virial theorem and calculate the expectation values $\langle 1/r \rangle_{nl}$, $\langle r \rangle_{nl}$ and $\langle r^2 \rangle_{nl}$; express the result in the units related to the Bohr radius.

e. For the isotropic harmonic oscillator, $U(r) = (1/2)m\omega^2 r^2$, obtain the recurrent relation analogous to eq. (3), recover the virial theorem and calculate $\langle r^2 \rangle_{Nl}$ and $\langle r^4 \rangle_{Nl}$ for the stationary state with main quantum number N and orbital momentum l.

3. /12/ For the hydrogen atom in the ground state find the expectation values of the electrostatic potential $\langle \varphi(\mathbf{R}) \rangle$, the electric field $\langle \vec{\mathcal{E}}(\mathbf{R}) \rangle$, and the product of the components $\langle \mathcal{E}_i(\mathbf{R}) \mathcal{E}_k(\mathbf{R}) \rangle$ at an arbitrary point \mathbf{R} ; explain the asymptotic, $R \to \infty$, behavior.