

ISP209 Spring 2002	Homework 9	Name:
Due: Thurs., Mar. 28, 2:40 pm, in	n Rm 118PA.	ID:
1. The work done on a mass as it increase or decrease during thi	•	. Does the kinetic energy of the mass
2. When a mass is slowly raised	from the floor to a	table by a human being what are the
		n? and Are
		same or opposite?
3. What is stored in a spring that i	is stretched or comp	pressed, force or energy?
		that comes to rest by compressing a
spring?		
A mass sliding on a table with an	n initial kinetic ener	rgy, $KE_0 = 100 \text{ J}$ is observed to have
a kinetic energy, $KE = 50 \text{ J}$ at		
5. The kinetic energy of the mass	changes by, ΔKE	$= KE - KE_0 = \underline{\hspace{1cm}}$
6. There is no spring to store <i>PE</i> .	What happened to	the missing energy?
7. What is the name of the non-co	onservative force th	at has affected the speed?
8. How much energy is transferre	ed to heat energy du	ring this motion?
9. Assuming the work done by th	ne average force is	equal to the change in kinetic energy,
what was the average force or	n the mass if it trave	eled a total of 10m?
, , , , , , , , , , , , , , , , , , ,		l(G), weak nuclear(WN) or strong following (100% correct for credit):
color of a green leaf scatter of neutrons off a nucleus period of Haley's comet (76 years beta decay producing a 3.5 MeV of boiling of water shape of a salt crystal	s) electron	screech of a tire on a roadhardness of a diamondsmell of brie cheesesound of a beating heartdecay of the Roman Empirefall of a thrown baseball
A spring, with spring constant k , distance x . It then expands horizo frictionless table (as shown in fig conditions (in your answers, use k)	ontally against a sma cure 9.1) Answer qu	all mass, m, that slides on a
11. What is the initial force acting	g on the small mass	in the horizontal direction?
12. What is the <i>net</i> force in the ve	ertical direction acti	ng on the small mass?
13. What is the initial potential er	nergy in the spring	
14. What is the speed of the mass	when it leaves the	spring?

Due: Thurs., Mar. 28, 2:40 pm, in Rm 118PA.

Earth

Earth

Figure for problem 15

15. A compressed spring with spring constant, k_0 , transfers all of its stored energy to a mass that slides on a frictionless table attached to the earth, as shown above. The mass then hits and compresses a second spring with spring constant, k, (k_0 has a different value) again without losing energy. What is the ratio of the compression, x, of the second spring to the compression, x_0 , of the first spring, i.e., what is the ratio of the compressions $x/x_0 =$ _______. ? (Hint: follow the energy.)

Problems 16 -18True or False (ignoring air friction):

- 16. Without changing direction, the work done to raise a mass sitting on the floor to one sitting on a table does not depend on how fast it is done.
- 17. Work is a vector because it can be either positive or negative.
- 18. A mass thrown upward has no forces acting on it at the highest point.
- 19. Which pair, below, are both considered non-conservative forces?
 - (a) gravitational and ideal spring forces
 - (b) gravitational and human forces
 - (c) ideal spring and human forces
 - (d) frictional and human forces
 - (e) elastic and frictional forces