Name: _____ID:

Due: Thurs., Apr. 11, 2:40 pm, in Rm 118PA.

<u>Hooke's law</u>: F=kx; <u>Weight</u>: $W=F_G=mg$, g=9.81N/kg(on Earth), <u>Torque</u>($F\perp r$): $\tau=Fr$;

<u>Work</u>: $w = \langle \mathbf{F} \rangle \cdot \mathbf{s}$; <u>Potential Energy</u>: $PE_S = \frac{1}{2}kx^2$ (spring), $PE_G = mgh$ (gravity on Earth);

<u>Kinetic Energy</u>: $KE = \frac{1}{2}mv^2$; <u>Energy Conservation</u>: $KE + PE = KE_0 + PE_0 + w_{NC}$;

<u>Momentum</u>: $\mathbf{p} = m\mathbf{v}$; No $F_{external}$: Sum(\mathbf{p}) = Sum(\mathbf{p}_0); 2^{nd} law (\mathbf{F} const.): $\mathbf{p} = \mathbf{p}_0 + \mathbf{F}\Delta t$

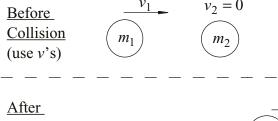
Before Collision (use v's)	m_1	$v_2 = 0$ m_2	
After Collision (use u's)		u_1 m_1	u_2 m_2

Two hockey pucks (masses m_1 and m_2), #1 moving with a speed v_1 and #2 at rest, collide head-on with energy conserved (an elastic collision, $w_{NC} = 0$).

1. What are the expressions for the kinetic energy and momentum of each puck before and after the collision?

Before collision: $KE_1 =$ ______, $\mathbf{p}_1 =$ ______, $KE_2 =$ ______, $\mathbf{p}_2 =$ ______ After collision: $KE_1 =$ ______, $\mathbf{p}_1 =$ ______, $KE_2 =$ ______, $\mathbf{p}_2 =$ ______

2. What are the expressions for the total momentum, $\mathbf{p}_{\text{tot}} = \mathbf{p}_1 + \mathbf{p}_2$, and the total energy, $E_{\text{tot}} = KE_1 + KE_2$, of the two pucks before and after the collision?


Before collision: $\mathbf{p}_{\text{tot}} =$ ______; After collision: $\mathbf{p}_{\text{tot}} =$ ______ Before collision: $E_{\text{tot}} =$ ______; After collision: $E_{\text{tot}} =$ ______

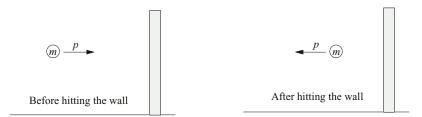
3. Momentum conservation and energy conservation can now be used to solve for the two speeds, u_1 and u_2 , in terms of the masses and the initial speeds. To simply the problem consider the two masses to be equal ($m_1 = m_2 = m$) and find the solution for the two speeds, u_1 and u_2 , (hint: square the momentum conservation equation.) Does the solution make sense to you?

1

Due: Thurs., Apr. 11, 2:40 pm, in Rm 118PA.

 v_1 $v_2 = 0$

After Collision (use *u*'s)

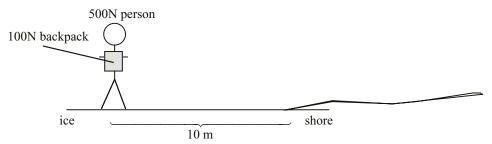

The same two hockey pucks collide again but this time they stick tightly together when they make contact.

- 4. Expressions for the total momentum in the system before and after the collision are: Before collision: $\mathbf{p}_{tot} = \underline{\hspace{1cm}}$; After collision: $\mathbf{p}_{tot} = \underline{\hspace{1cm}}$
- 5. Using momentum conservation, the speed u, of the masses in terms of m's and v's is:

u =_____

- 6. Use the speed from problem 5, to evaluate the total mechanical energy (KE and PE, not heat) of the masses (use m's and v's) and compare them.

 Before collision: $E_{\text{tot}} = \underline{}$; After collision: $E_{\text{tot}} = \underline{}$
- 7. The total mechanical energy in the system (*did* or *didn't*) change. Explanation:



A mass with momentum, \mathbf{p} , hits a wall and bounces off with momentum, $-\mathbf{p}$.

- 8. Is the momentum of the small mass alone conserved?
- 9. In addition to the small mass, what other object(s) are involved in the collision
- 10. To conserve momentum, what is momentum *vector* of the object(s)? $\mathbf{p}_{e} = \underline{\hspace{1cm}}$
- 11. Is the collision "elastic" or "inelastic"? (see definition of "elastic" in prob. 1)

Due: Thurs., Apr. 11, 2:40 pm, in Rm 118PA.

ID:

A person (weight 500N) wearing a backpack filled with CDs (weight 100N) is standing on a frozen lake that is too slippery to walk on but the shore is just 10m away.

- 12. Which direction should the backpack be thrown to get the person to the shore? (Throwing the CDs on the ice to make a path to shore is not the answer.)
- 13. How long does it take for the person to reach the shore if the backpack is thrown with a speed of 5m/s?
- 14. In which case is momentum **not** conserved?
 - (a) when two objects collide and stick together.
 - (b) when an internal force is applied to 2 unequal masses.
 - (c) when both ends of a force are applied in opposite directions on two objects.
 - (d) when the effects of a net force acting on a single mass are observed.
 - (e) when masses are affected by an explosion.