PHYSICS 232 SPRING 2002 PRACTICE EXAM 3 SOLUTIONS

Some Useful Information:

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ (eV)} \cdot \text{s}$$

$$h \cdot c = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^{-6} \text{ (eV)} \cdot \text{m}$$

$$e = 1.60 \times 10^{-19} \text{ C}$$

$$m_{\text{p}} = 1.67 \times 10^{-27} \text{ kg}$$

$$c = 3 \times 10^{8} \text{ m/s}$$

1. A man is told this year (2002) that he has exactly $\Delta t_p = 12$ years to live. However, he then gets into a rocket ship and travels at 0.8*c* away from the earth, and then returns at the same speed. The last New Year the doctors can expect him to celebrate is:

a) 2006
b) 2012
c) 2017
d) 2022
e) 2027

$$\Delta t = g \Delta t_p = 1.667 \cdot 12 \text{ yr} = 20 \text{ yr}$$

- 2. In the photoelectric effect experiment at a frequency above cut off, the number of electrons ejected is proportional to :
 - a) the kinetic energy of the photons
 - b) the potential energy of the electrons
 - c) the work function of the sample
 - d) the frequency of the incident light
 - e) the number of photons that hit the sample
- 3. Interference of light is evidence that:
 - a) the speed of light is very large
 - b) light is a transverse wave
 - c) light is electromagnetic in character
 - d) light is a wave phenomenon
 - e) light does not obey conservation of energy
- 4. Two slits in an opaque barrier each have a width of a = 0.020 mm and are separated by d = 0.050 mm. When coherent monochromatic light passes through the slits the number of interference maxima within the central diffraction maximum is

a) 1
b) 2
c) 3
d) 4
e) 5
Interference maxima:
$$m\mathbf{l} = d \sin(\mathbf{q}_i)$$
 with $m = 0, \pm 1, \pm 2, \pm 3...$
 1^{st} diffraction minimum: $\mathbf{l} = a \sin(\mathbf{q}_d)$. We want
 $|\sin(\mathbf{q}_i)| < \sin(\mathbf{q}_d)$, giving $\frac{|m|\mathbf{l}|}{d} < \frac{\mathbf{l}}{a} \implies |m| < \frac{d}{a} = 2.5$.
Thus $|m_{\text{max}}| = 2$, giving $m = 0, \pm 1, \pm 2$.

- 5. Radio waves are diffracted by large objects such as buildings whereas visible light is not. Why is this?
 - a) Radio waves are unpolarized, whereas light is plane polarized
 - b) <u>The wavelength of light is much smaller than the wavelength of radio</u> waves.
 - c) The wavelength of light is much greater than the wavelength of radio waves
 - d) Radio waves are coherent, and light is usually not coherent
 - e) The frequency of radio waves is greater than the frequency of light waves
- 6. A proton has a rest energy of 938 MeV. If the proton is moving at velocity v = 0.95c, its kinetic energy is?

a)	1.51 GeV	
b)	1.65 GeV	Civen $VE = (\sigma - 1)m \sigma^2$ and $\alpha = 2.20$ Then
c)	1.79 GeV	Given $KE = (\boldsymbol{g} - 1)m_{\rm p}c^2$ and $\gamma = 3.20$. Then
d)	1.93 GeV	$KE = 2.20 \times 938 \text{ MeV} = 2.06 \text{ GeV}$
e)	<u>2.06 GeV</u>	

7. Two photons are produced when a proton and an anti-proton annihilate each other. What is the maximum wavelength of each photon?

a)	7.25×10 ⁻¹⁶ m 9.73×10 ⁻¹⁶ m	$C_{\rm inter} E = m_{\rm e}^2 - 028 {\rm MeV}$ Then
b)	9.73×10 ⁻¹⁶ m	Given $E_{\text{photon}} = m_{\text{p}}c^2 = 938 \text{ MeV}$. Then
c)	<u>1.3⁻10⁻¹⁵ m</u>	$I = \frac{1.24 \times 10^{-6} \text{ (eV)} \cdot \text{m}}{1.32 \times 10^{-15} \text{ m}}$
d)	4.3×10 ⁻¹⁵ m	9.38×10 ⁸ eV 9.32×10 ⁸ m
e)	5.98×10 ⁻¹⁵ m	

8. In a diffraction grating (spacing *d*) experiment, light of $I_1 = 600$ nm wavelength produces a first-order maximum $y_1 = 0.35$ mm from the central maximum on a distant screen (distance *L* from grating). A second monochromatic source produces a third-order maximum $y_2 = 0.87$ mm from the central maximum when it passes through the same diffraction grating. What is the wavelength I_2 of the light from the second source?

a)	633 nm	v_1 v_2 v_3
b)	<u>497 nm</u>	Given: $1 \cdot I_1 = d \frac{y_1}{I}$ and $3 \cdot I_2 = d \frac{y_2}{I}$. Then
c)	342 nm	
d)	679 nm	$\frac{3 \cdot \boldsymbol{l}_2}{\boldsymbol{l}_2} = \frac{y_2}{y_2} \implies \boldsymbol{l}_2 = \boldsymbol{l}_1 \frac{y_2}{3 \cdot y_2} = 497 \text{ nm}$
e)	713 nm	$I_1 y_1 3 \cdot y_1$

- 9. A person of mass m = 50 kg has a wavelength of $I = 4.42 \times 10^{-36}$ m when running. How fast (v) is she running?
 - a) 2 m/s b) 3 m/sc) 4 m/sd) 5 m/s e) 6 m/s $l = \frac{h}{p} = \frac{h}{mv} \Rightarrow v = \frac{h}{ml} = 3.0 \text{ m/s}$
- 10. Light of 450 nm wavelength shines on a metal surface. Electrons are emitted with a maximum energy of 1.20 eV. What is the work function for the surface?

a)	<u>1.56 eV</u>	$1 \qquad 1 24 \dots 10^{-6} (X)$
b)	1.20 eV	$E_{\rm shoton} = \frac{hc}{m} = \frac{1.24 \times 10^{-6} \text{ (eV)} \cdot \text{m}}{2} = 2.76 \text{ eV}$
c)	3.72 eV	$L_{\text{photon}} = \frac{1}{l} = \frac{4.5 \times 10^{-7} \text{ m}}{4.5 \times 10^{-7} \text{ m}}$
d)	4.79 eV	$KE_{\text{max}} = E_{\text{photon}} - f \implies f = E_{\text{photon}} - KE_{\text{max}} = 1.56 \text{eV}$
e)	5.03 eV	

11. X-rays are:

a) electromagnetic waves

- b) negatively charged ions
- c) rapidly moving electrons
- d) rapidly moving protons
- e) rapidly moving neutrons
- 12. A thin layer of oil (n = 1.25) is floating on water (n = 1.33). What is the minimum thickness *t* for the oil in the region that reflects green light ($\lambda = 530$ nm)?

 a) b) c) d) e) 	212 nm 313 nm 404 nm 500 nm 607 nm	Because rays #1 & #2 reflect off 1.00/1.25 and 1.25/1.33 interfaces, respectively, then both rays have 180° phase shifts due to reflection. Thus one needs a "0°" phase shift, when ray #2 travels through the oil a distance of $2 \times t$, to have constructive interference. The equation needed is: $2 \cdot n \cdot t = m\mathbf{l}$ with $m = 1$. Finally, $t = \frac{\mathbf{l}}{2 \cdot 1.25} = 212 \text{ nm}$.
--	--	--