Physics 410-2002 Thermal Physics

Problem Set 2

1. Consider a system of $N=10^{8}$ spins, each of magnetic moment $m=e \hbar /\left(2 m_{e}\right)\left(e\right.$ and m_{e} are the electron charge and mass), in a magnetic field $B=1 \mathrm{~T}$. Assume that, as a result of interaction, each energy level $-2 m s B$ (s is the spin excess) is split, so that the energy levels of the stationary states fill the gap $2 m B$ uniformly. For $s=N^{1 / 2}$, make an estimate of how long it will take to determine that the system is in a stationary state. For what N does this time become of the order of the age of the universe? (6 pt)
2. Problem 1, Chapter 2 (5 pt)
3. Problem 2, Chapter 2 (6 pt)
4. Problem 5, Chapter 2 (5 pt)

You need to have 20 points out of 22 (2 points are extra credit).
The problems are from Kittel \& Kroemer, Thermal Physics, 2nd edition, (Freeman, NY 1980).

