Physics 410-2002 Thermal Physics

Problem Set 3

1. Consider a particle of mass m confined in a one-dimensional potential box with walls at $x=0$ and $x=L$. (a) Plot the classical trajectory of the particle in phase space (p, x); (b) Find the phase volume $\Gamma_{0}(E)$ for all energies $\leq E$; (c) Find the total number of quantum states with energies $\leq E$ assuming that $E \gg \hbar^{2} / 2 m L^{2}$. Compare the result with $\Gamma_{0}(E) / 2 \pi \hbar$ (6 pt)
2. Answer the questions (b) and (c) of the previous problem for a 3-dimensional particle in a cubic potential box of size L. (9 pt)
3. N molecules of an ideal gas are placed in a container of volume V. Let a part of these molecules, n, occupy volume v. The system is in thermal equilibrium. (a) Find the probability distribution $P(n)$ and show that it is Gaussian for large N, n; (b) Find $\langle n\rangle$ and $\left\langle(n-\langle n\rangle)^{2}\right\rangle$ in this case (8 pt)

You need to have 20 points out of 23 (3 points are extra credit).

