Physics 410-2002 Thermal Physics

Problem Set 5

1. Chapter 3, p. 83 , problem 4 [ignore the note] (4 pt)
2. Chapter 3, p. 84, problem 6 (6 pt)
3. Chapter 3, p. 86, problem 11 (5 pt)
4. Heat capacity for constant pressure is given by the expression

$$
C_{p}=\tau\left(\frac{\partial \sigma}{\partial \tau}\right)_{p}
$$

Using Maxwell relations, show that

$$
\begin{aligned}
& {\left[\partial C_{P} / \partial p\right]_{\tau}=-\tau\left[\partial^{2} V / \partial \tau^{2}\right]_{p}(5 \mathrm{pt})} \\
& {[\partial \tau / \partial p]_{\sigma}=\left(\tau / C_{P}\right)[\partial V / \partial \tau]_{p}(6 \mathrm{pt})}
\end{aligned}
$$

5. Using the canonical (Boltzmann) distribution for a classical system of interacting atoms of mass m, with the Hamiltonian

$$
\mathcal{H}(p, q)=\frac{1}{2 m} \sum_{i} \mathbf{p}_{i}^{2}+U\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{N}\right)
$$

find the (normalized) probability density for an atom to have a given momentum \mathbf{p} [the Maxwell distribution] (9 pt)

You need to have 25 points out of 35 (10 points are extra credit).
The problems are from Kittel \& Kroemer, Thermal Physics, 2nd edition, (Freeman, NY 1980).

