PHY-852 QUANTUM MECHANICS II

Homework 10, 40 points
April 10-17, 2002
Stationary perturbations.
Reading: Merzbacher, Chapters 8, 18.

1. /8/ Merzbacher, Problems 2 and 3, p. 177. [It might be convenient to use for the solution the creation and annihilation operators.]
2. a. $/ 5 / \mathrm{A}$ static electric field is applied along the axis of vibration of a charged linear harmonic oscillator. Find the first and second order corrections to the energy levels of the oscillator; compare the result with the exact solution.
b. $/ 5 /$ A mass m of the linear harmonic oscillator is increased by δm. Find the first and second order corrections to the energy levels; compare the result with the exact solution and find the convergence condition for perturbation theory.
3. A small electric dipole \mathbf{d} with the moment of inertia I can freely rotate in its plane $x y$; the corresponding Hamiltonian is

$$
\begin{equation*}
\hat{H}=\frac{\hbar^{2} \hat{l}^{2}}{2 I} \tag{1}
\end{equation*}
$$

where $\hat{l}=\hat{l}_{z}$ is the angular momentum component for the rotation in plane. A static electric field $\overrightarrow{\mathcal{E}}$ is applied along the x-axis.
a. $/ 5 /$ Considering the electric field as a perturbation find the polarizability of the ground state.
b. /8/ Find the first and second order corrections to the energy levels.
4. $\star / 9 /$ Derive the uncertainty relations for the Heisenberg operators of coordinate $\hat{x}\left(t_{1}\right)$ and momentum $\hat{p}\left(t_{2}\right)$ in case of (i) free motion; (ii) a particle in a uniform field of a force; (iii) a harmonic oscillator.

