PHY-852 QUANTUM MECHANICS II

Homework 3, 30 points
January 30 - February 6, 2002
Orbital momentum. Central field.
Reading: Merzbacher, Chapter 11, sections 3-5; Chapter 12.

1. a. $/ 5 /$ Show that an arbitrary angular wave function of a particle with orbital momentum $l=1$ can be written as

$$
\begin{equation*}
\psi(\mathbf{n})=(\mathbf{a} \cdot \mathbf{n}) \tag{1}
\end{equation*}
$$

where \mathbf{a} is some complex vector independent on the direction of $\mathbf{n}=\mathbf{r} / r$. b. $/ 3 /$ Let $|\psi\rangle$ be a state of a particle with orbital momentum $l=1$, and e a unit vector in some direction. Find the result of action

$$
\begin{equation*}
\left[(\hat{\mathbf{l}} \cdot \mathbf{e})^{2}-1\right](\hat{\mathbf{l}} \cdot \mathbf{e})|\psi\rangle . \tag{2}
\end{equation*}
$$

c. $/ 4 /$ For the state (1) find the expectation values of the orbital momentum components \hat{l}_{k}.
2. a. /6/ Merzbacher, Problem 7, p. 276.
b. /6/ Merzbacher, Problem 8, p. 276.
3. /6/ Merzbacher, Problem 14, p. 276.

