PHY-852 QUANTUM MECHANICS II

Homework 6, 30 points
February 20-27, 2002
Elastic scattering and Born approximation. Reading: Merzbacher, Chapters 13 and 20.

1. a. /3/ Merzbacher, Exercise 13.7.
b. $/ 5 /$ Establish the relation between your result and the Bragg condition

$$
\begin{equation*}
n \lambda=2 d \sin \frac{\theta}{2} \tag{1}
\end{equation*}
$$

for the scattering angles θ that correspond to the interference maxima in the particle scattering by a system of parallel crystallic planes (n is an integer and λ is the wave length of the particle).
2. a. /3/ Merzbacher, Exercise 13.9.
b. /3/ Merzbacher, Exercise 13.10.
c. $/ 4 /$ For the total cross section in problems a and b consider the limiting cases of low and high energies, $k a \ll 1$ and $k a \gg 1$, respectively (in the Exercise $13.9 a$ is the radius of the well).
3. Consider the standard expression for the elastic scattering amplitude for a particle of mass m in the potential $U(\mathbf{r})$,

$$
\begin{equation*}
f\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=-\frac{m}{2 \pi \hbar^{2}} \int d^{3} r e^{-i\left(\mathbf{k}^{\prime} \cdot \mathbf{r}\right)} U(\mathbf{r}) \psi_{\mathbf{k}}(\mathbf{r}), \quad \mathbf{k}^{\prime}=k \frac{\mathbf{r}}{r} \tag{2}
\end{equation*}
$$

where the wave function $\psi_{\mathbf{k}}(\mathbf{r})$ has at large distances r the asymptotic behavior

$$
\begin{equation*}
\psi_{\mathbf{k}}(\mathbf{r}) \approx e^{i(\mathbf{k} \cdot \mathbf{r})}+f\left(\mathbf{k}^{\prime}, \mathbf{k}\right) \frac{e^{i k r}}{r} \tag{3}
\end{equation*}
$$

a. /4/ For the potential that at large distances falls off as $U(r) \propto r^{-s}$, find which values of s allow the asymptotic solution in the form (2).
b. $/ 5 /$ For a potential which becomes negligibly small at distances $r \sim R$, find at what distances the asymptotic representation (3) becomes valid.
c. $/ 3 /$ For an arbitrary potential $U(r)$ with central symmetry, show that if the Born approximation is valid, the product $E \sigma(E)$, where $\sigma(E)$ is the total scattering cross section at energy E, is a monotonously growing function of E.

