PHY-852 QUANTUM MECHANICS II

Homework 8, 25 points
March 27 - April 3, 2002
Spin.
Reading: Merzbacher, Chapter 16.

1. /3/ Merzbacher, Exercise 16.9.
2. /5/ Merzbacher, Exercise 16.12.
3. /5/ Merzbacher, Exercise 16.19.
4. $/ 3 /$ Calculate $(\mathbf{a} \cdot \vec{\sigma})^{8}$, where \mathbf{a} is an arbitrary fixed vector and $\vec{\sigma}$ is a vector whose Cartesian components are spin Pauli matrices σ_{i}.
5. $/ 6 /$ a. Let χ and φ be two arbitrary spinors for a particle of spin $1 / 2$. Using three Pauli matrices $\vec{\sigma}$, construct the quantity

$$
\begin{equation*}
\mathbf{V}=\varphi^{\dagger} \vec{\sigma} \chi \tag{1}
\end{equation*}
$$

Show that under rotation the components V_{i} are transformed as the components of a vector. Check your results for a rotation around the z-axis.
b. $/ 3 /$ A proton state is characterized by the momentum \mathbf{p} along the z-axis and by the certain value $h=+1$ of the helicity (projection $h=(\vec{\sigma} \cdot \mathbf{p}) /|\mathbf{p}|$ of the proton spin $(\mathbf{s}=(1 / 2) \vec{\sigma})$ on the direction of the momentum $\mathbf{p})$. Let $\hat{\mathbf{j}}$ be the total angular momentum operator of the proton. What are the characteristics of the state obtained from the original one by the action of the operator $\exp \left(-i \hat{j}_{y} \alpha\right)$?

