PHY-852 QUANTUM MECHANICS II Homework 8, 25 points March 27 - April 3, 2002 Spin. Reading: Merzbacher, Chapter 16.

- 1. /3/ Merzbacher, Exercise 16.9.
- 2. /5/ Merzbacher, Exercise 16.12.
- 3. /5/ Merzbacher, Exercise 16.19.
- 4. /3/ Calculate $(\mathbf{a} \cdot \vec{\sigma})^8$, where **a** is an arbitrary fixed vector and $\vec{\sigma}$ is a vector whose Cartesian components are spin Pauli matrices σ_i .
- 5. /6/a. Let χ and φ be two arbitrary spinors for a particle of spin 1/2. Using three Pauli matrices $\vec{\sigma}$, construct the quantity

$$\mathbf{V} = \varphi^{\dagger} \vec{\sigma} \chi. \tag{1}$$

Show that under rotation the components V_i are transformed as the components of a vector. Check your results for a rotation around the z-axis.

b. /3/ A proton state is characterized by the momentum \mathbf{p} along the z-axis and by the certain value h = +1 of the helicity (projection $h = (\vec{\sigma} \cdot \mathbf{p})/|\mathbf{p}|$ of the proton spin ($\mathbf{s} = (1/2)\vec{\sigma}$) on the direction of the momentum \mathbf{p}). Let $\hat{\mathbf{j}}$ be the total angular momentum operator of the proton. What are the characteristics of the state obtained from the original one by the action of the operator $\exp(-i\hat{j}_y\alpha)$?