NAME.
PHY-852: QUANTUM MECHANICS I
Quiz 1
January 28, 2002
PROBLEM. An angular part of the wave function of a particle is

$$
\begin{equation*}
\psi=A \sin ^{2} \theta . \tag{1}
\end{equation*}
$$

Find the possible values of l and m in this state and their probabilities.

SOLUTION.

The absence of the ϕ-dependence shows that only $m=0$ is possible. Because of parity, we can have only even l, and since this is a polynomial of the second order in $\cos \theta$, the allowed values are $l=0$ and $l=2$. Therefore we have a superposition of Y_{00} and Y_{20}, or $P_{0}=1$ and $P_{2}=(3 / 2) \cos ^{2} \theta-(1 / 2)$,

$$
\begin{equation*}
\psi=A\left[1-\cos ^{2} \theta\right]=A \cdot \frac{2}{3}\left(P_{0}-P_{2}\right)=\frac{2}{3} A \sqrt{4 \pi}\left(Y_{00}-\frac{1}{\sqrt{5}} Y_{20}\right) \tag{2}
\end{equation*}
$$

¿From the weights of the relative components of the orthonormalized functions Y_{00} and Y_{20} we find the probabilities w_{2} of $l=2$ and w_{0} of $l=0$:

$$
\begin{equation*}
w_{2}=\frac{1}{6}, \quad w_{0}=\frac{5}{6} . \tag{3}
\end{equation*}
$$

