PHY-852: QUANTUM MECHANICS I

 Quiz 2February 6, 2002
PROBLEM. For a particle in a central field in the state with the orbital momentum l and its projection $l_{z}=m$, calculate the expectation value $\left\langle l_{\mathbf{n}}\right\rangle$ and the mean square fluctuation

$$
\begin{equation*}
\left\langle\left(\Delta l_{\mathbf{n}}\right)^{2}\right\rangle=\left\langle l_{\mathbf{n}}^{2}\right\rangle-\left\langle l_{\mathbf{n}}\right\rangle^{2} \tag{1}
\end{equation*}
$$

where $l_{\mathbf{n}}$ is the orbital momentum projection onto the axis \mathbf{n} with the azimuthal angle α and polar angle β. Explain what happens at $\beta=0$.

SOLUTION.

The operator under question is

$$
\begin{equation*}
l_{\mathbf{n}}=(\mathbf{l} \cdot \mathbf{n})=l_{x} n_{x}+l_{y} n_{y}+l_{z} n_{z}=l_{x} \sin \beta \cos \alpha+l_{y} \sin \beta \sin \alpha+l_{z} \cos \beta \tag{2}
\end{equation*}
$$

Its expectation value is

$$
\begin{equation*}
\left\langle l_{\mathbf{n}}\right\rangle=\left\langle l_{z}\right\rangle \cos \beta=m \cos \beta \tag{3}
\end{equation*}
$$

In calculating $\left\langle l_{\mathbf{n}}^{2}\right\rangle$, the operators $l_{x} l_{z}, l_{z} l_{x}$ and $l_{y} l_{z}, l_{z} l_{y}$ have no expectation values (total change of projection is ± 1); the operators $l_{x} l_{y}$ and $l_{y} l_{x}$ cancel each other, see Problem 1b, Homework 2. It results in

$$
\begin{equation*}
\left\langle l_{\mathbf{n}}^{2}\right\rangle=\left\langle l_{x}^{2}\right\rangle \sin ^{2} \beta \cos ^{2} \alpha+\left\langle l_{y}^{2}\right\rangle \sin ^{2} \beta \sin ^{2} \alpha+\left\langle l_{z}^{2}\right\rangle \cos ^{2} \beta \tag{4}
\end{equation*}
$$

or using the results of the same Problem 1,

$$
\begin{equation*}
\left\langle l_{\mathbf{n}}^{2}\right\rangle=\frac{1}{2}\left[l(l+1)-m^{2}\right] \sin ^{2} \beta+m^{2} \cos ^{2} \beta . \tag{5}
\end{equation*}
$$

The mean square fluctuation is

$$
\begin{equation*}
\left\langle\left(\Delta l_{\mathbf{n}}\right)^{2}\right\rangle=\frac{1}{2} \sin ^{2} \beta\left[l(l+1)-m^{2}\right] . \tag{6}
\end{equation*}
$$

It vanishes at $\beta=0$ when the direction of \mathbf{n} coincides with the polar axis (then $l_{\mathbf{n}}=l_{z}$ has a certain value).

