NAME...
PHY-852: QUANTUM MECHANICS I
Quiz 3
February 2002
PROBLEM. A three-dimensional square potential well supports only one loosely bound level with the ratio of binding energy to the depth of the well $\epsilon / U_{0}=1 / 60$. Estimate the probability to find the particle outside the well.

SOLUTION.

The bound state has to have $l=0$. The s-wave solution has a standard form $\psi(r)=u(r) / r$,

$$
u(r)=\left\{\begin{array}{ccc}
A \sin (k r), & k=\sqrt{2 m\left(U_{0}-\epsilon\right) / \hbar^{2}}, & 0 \leq r \leq R \tag{1}\\
B \exp (-\kappa r), & \kappa=\sqrt{2 m \epsilon / \hbar^{2}}, & r \geq R
\end{array}\right.
$$

where R is the radius of the well. From the continuity requirements

$$
\begin{equation*}
A \sin (k R)=B e^{-\kappa R}, \quad k A \cos (k R)=-\kappa B e^{-\kappa R} \tag{2}
\end{equation*}
$$

and the equation for binding energy is

$$
\begin{equation*}
k \cot (k R)=-\kappa \tag{3}
\end{equation*}
$$

Since the level is very loosely bound,

$$
\begin{equation*}
k R \approx \frac{\pi}{2}, \quad k \approx \sqrt{\frac{2 m U_{0}}{\hbar^{2}}} \tag{4}
\end{equation*}
$$

The internal probability

$$
\begin{equation*}
I_{i}=A^{2} \int_{0}^{R} d r \sin ^{2}(k r)=A^{2}\left(\frac{R}{2}-\frac{\sin (2 k R)}{4 k}\right) \approx A^{2} \frac{R}{2} \tag{5}
\end{equation*}
$$

the external probability

$$
\begin{equation*}
I_{e}=B 2 \int_{R}^{\infty} d r e^{-2 \kappa R}=B^{2} \frac{\exp (-2 \kappa R)}{2 \kappa} \tag{6}
\end{equation*}
$$

or, using the first condition (2) and (4),

$$
\begin{equation*}
I_{e}=A^{2} \frac{\sin ^{2}(k R)}{2 \kappa} \approx A^{2} \frac{1}{2 \kappa} \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{I_{e}}{I_{i}}=\frac{1}{\kappa R} \tag{8}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{\epsilon}{U_{0}}=\frac{(\kappa R)^{2}}{(k R)^{2}} \approx \frac{4}{\pi^{2}}(\kappa R)^{2}=\frac{1}{60} \tag{9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
(\kappa R)^{2} \approx \frac{\pi^{2}}{240} \leadsto \frac{I_{e}}{I_{i}} \approx \frac{\sqrt{240}}{\pi} \approx 5 \tag{10}
\end{equation*}
$$

