

- With no forces acting on an ideal spring, its length is called the normal or natural length.
- To stretch an ideal spring, how many forces must *act on* the spring? two
- Can forces of different magnitude be applied to opposite sides of an ideal spring? no
- What are the units of a spring constant? force/unit length (e.g., N/cm)
- What is the metric unit of force? newton What symbol denotes this unit? N
- In lbs, what force is equal to 1 N? 1/4 lb
- Substitute the values of the spring constant, $k = 5 \text{ N/cm}$, and a stretch, $x = 15 \text{ cm}$ into Hooke's law to determine the force, F , (with units) needed to maintain this stretch.

(show work here)
$$F = kx = (5 \text{ N/cm})(15 \text{ cm}) = 75 \text{ N}$$

$$F = 75 \text{ N}$$

- A force of 21 N, stretches a spring by 7 cm. What is its spring constant? 3 N/cm.

$$k = \frac{F}{x} = \frac{21 \text{ N}}{3 \text{ cm}} = 7 \text{ N/cm}$$

- What is the maximum force (in lb. & N) that you apply to dental floss when flossing your teeth? Do not guess, use simple logic! For example, imagine lifting something heavy (a box of books, a bicycle, etc.) with dental floss, would it cut your hand? YES

maximum force on dental floss = 1 - 5 lb., and 4 - 20 N

- An additional 10 N of force will increase the stretch of a spring from 5 cm to 7 cm.
 - What is the spring constant (w/ units) of this spring? 5 N/cm
 - What force (w/ units) is needed to hold the spring stretched by 7 cm? 35 N
 - What additional force (w/ units) stretches this spring another 3 cm? 15 N

$\text{a) } k = \frac{\Delta F}{\Delta x}; \quad \Delta F = 10 \text{ N}, \Delta x = (7 - 5) \text{ cm} = 2 \text{ cm}$ $= \frac{10 \text{ N}}{2 \text{ cm}} = 5 \text{ N/cm}$	$\text{b) } F = kx = (5 \text{ N/cm})(7 \text{ cm}) = 35 \text{ N}$ $\text{c) } \Delta F = k\Delta x = (5 \text{ N/cm})(3 \text{ cm}) = 15 \text{ N}$
--	---

- A rod has a spring constant $k = 2 \times 10^7 \text{ N/m}$ (note units). How far will it compress (in mm!) under a force of $2 \times 10^3 \text{ N}$? mm

$$x = \frac{F}{k} = \frac{2 \times 10^3 \text{ N}}{2 \times 10^7 \text{ N/m}} = 1 \times 10^{-4} \text{ m} = 1 \times 10^{-4} \text{ m} \left(\frac{10^3 \text{ mm}}{1 \text{ m}} \right) = 0.1 \text{ mm}$$

- Complete this sentence: Springs *generate* force, and *store* energy.
- Convert the pressure $1 \times 10^5 \text{ N/m}^2$ to a pressure in lb/in^2 (1 in = 2.54 cm). Use the conversion factors given at the end of the chapter.

$$1 \times 10^5 \text{ N/m}^2 = 1 \times 10^5 \text{ N/m}^2 \left(\frac{1 \text{ lb}}{4 \text{ N}} \right) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right)^2 \left(\frac{2.5 \text{ cm}}{1 \text{ in}} \right)^2$$

$$= 1.5 \times 10^1 \text{ lb/in}^2$$

14. The density of lead is 11 g/cm^3 (1 cm^3 has an 11 g mass). What is the mass (in kg) of 1 m^3 of lead? (convert lead's density to kg/m^3 ; 1 m^3 is a cube, 100 cm on a side; $1 \text{ g} = 10^{-3} \text{ kg}$.)

$$11 \text{ g/cm}^3 = 11 \text{ g/cm}^3 \left(1 \text{ kg}/1000 \text{ g}\right) \left(100 \text{ cm}/1\text{m}\right)^3 = 11 \times 10^3 \text{ kg/m}^3$$

The density indicates that 1 m^3 of lead has a mass of $11 \times 10^3 \text{ kg}$.

$$m = 11 \times 10^3 \text{ kg.}$$

15. A cubic centimeter of water has a 1 gram mass, i.e., the density is 1 g/cm^3 . What is the mass of one cubic meter of water? (convert water's density to kg/m^3).
(show work here)

$$1 \text{ g/cm}^3 = 1 \text{ g/cm}^3 \left(1 \text{ kg}/1000 \text{ g}\right) \left(100 \text{ cm}/1\text{m}\right)^3 = 1 \times 10^3 \text{ kg/m}^3$$

The density indicates that 1 m^3 of lead has a mass of $1 \times 10^3 \text{ kg}$.

$$m = 1 \times 10^3 \text{ kg.}$$