1. Which condition is impossible:
 a) acceleration equal to zero, and velocity not equal to zero.
 b) acceleration not equal to zero, and velocity equal to zero. (ball at highest point)
 c) acceleration not equal to zero, and velocity not equal to zero.
 d) acceleration equal to zero, and velocity equal to zero.
 e) none of the above.

2. A mass weighs 10,000 N on the planet Mongo \(g_{Mongo} = 25 \text{ N/kg} \). What is its weight on the Earth?

\[
m = \frac{W_{Mongo}}{g_{Mongo}} = \frac{W_{Earth}}{g_{Earth}}; \quad W_{Earth} = \frac{g_{Earth}}{g_{Mongo}} W_{Mongo} = \frac{10 \text{ N/kg}}{25 \text{ N/kg}} (10,000 \text{ N}) = 4,000 \text{ N}
\]

 a) 250,000 N b) 400 N c) 2.5 N d) 4000 N e) 2500 N

3. A force \(F \) accelerates three masses tied together with strings along a frictionless surface as shown in the figure above. What is the acceleration of the three masses?

The force \(F \) must accelerate all three masses \((9m_1) \)

\[
F = ma = 9m_1 a
\]

a) \(F \) \(\frac{3m_1}{5m_1} \) b) \(F \) \(\frac{F}{8m_1} \) c) \(F \) \(\frac{F}{9m_1} \) d) \(F \) \(\frac{F}{9m_1} \) e) \(F \) \(\frac{F}{10m_1} \)

4. What is the net force acting on the middle mass?

\[
(\text{net force on middle mass}) \quad F = ma = (3m_1) \left(\frac{F}{9m_1} \right) = \frac{F}{3}
\]

a) \(F \) b) \(F \) \(\frac{F}{2} \) c) \(F \) \(\frac{F}{3} \) d) \(F \) \(\frac{F}{4} \) e) \(F \) \(\frac{F}{6} \)

Note that the forces acting on the central mass are the force vectors.

\[
T_5 = -5m_1 a \quad \text{and} \quad T_8 = +8m_1 a
\]
A ball with a mass of 2kg is thrown up (+ direction) into the air (ignore air friction).
(Draw this situation in the right margin, including the vectors asked for below)

5. What force acts on the ball at the highest point? magnitude mg, direction downward (–)

6. What is the acceleration (both magnitude and direction) of the ball,
at the highest point? (magnitude g, and direction downward (–)),
on the way up? (magnitude g, and direction downward (–)),
on the way down? (magnitude g, and direction downward (–))

7. If the ball is thrown to a height of 20m above your hand, how long will it take to get back to your hand?

\[v^2 - v_0^2 = 2a \cdot s = 2(-g) \cdot s \]
\[-v_0^2 = -2(10 \text{ m/s}^2)(+20 \text{ m}) = -400 \text{ m}^2/\text{s}^2 \]
\[v_0 = 20 \text{ m/s}; \quad v_0 = +20 \text{ m/s} \]

\[s = v_0 t + \frac{1}{2} a t^2 \]
\[0 = v_0 t - \frac{1}{2} g t^2 \]
\[t = \frac{2v_0}{g} = \frac{40 \text{ m/s}}{10 \text{ m/s}^2} = 4 \text{ s} \]

8. What will be the speed of the ball when it hits your hand? 20 m/s.

\[v = v_0 - gt \]
\[= (+20 \text{ m/s}) - (10 \text{ m/s}^2)(4 \text{ s}) \]
\[= -20 \text{ m/s}; \quad v = 20 \text{ m/s} \]
A train weighing 10^6 N, moving with a speed of 30 m/s, is slowed to $v = 0$, in a distance of 100 m, by a constant applied force, F.

determine mass of the train

\[
m = \frac{W}{g} = \frac{(10^6 \text{ N})}{(10 \text{ N/kg})} = 10^5 \text{ kg}
\]

\[
v^2 - v_0^2 = 2a \cdot s \quad \Rightarrow \quad a = \frac{-v_0^2}{2s} = \frac{-900 \text{ m}^2/\text{s}^2}{200 \text{ m}} = 4.5 \text{ m/s}^2
\]

9. What is the acceleration (with units) of the train? 4.5 m/s^2

\[
F = ma = \left(10^5 \text{ kg}\right)\left(4.5 \text{ m/s}^2\right) = 4.5 \times 10^5 \text{ N}
\]

10. What is the value (with units) of the force F? $4.5 \times 10^5 \text{ N}$

Two masses are attached to a string that runs through the massless pulley as shown in the figure. Only gravity and the tension in the string act on the masses.
11. If the masses are equal, \(m_1 = m_2 = m \), which statement below is true?

- a) the tension in the string is \(mg \).
- b) the tension in the string is \(2mg \).
- c) the tension in the string is zero.
- d) the masses must be at rest.
- e) the speed of the masses can be different.

12. If the masses shown at the right are not equal to each other, which statement below is true:

- a) the speed of the masses cannot be zero.
- b) the two masses cannot have the same speed.
- c) the magnitude of the acceleration of the masses can be zero.
- d) the two masses can never have the same magnitude of the acceleration.
- e) the two masses must have the same speed, the same magnitude of the acceleration, and the same tension acting on them.