

1. In your own words, explain why a person feels weightless in a space station orbiting the earth.

When Gravity is the only force acting on your body you can't feel it!

2. Explain why one feels heavier than normal at the *lowest* point in the motion of both an UP and a DOWN elevator. Also explain why one feels lighter than normal at the *highest* point in the motion of both an UP and a DOWN elevator.

At lowest point you --

begin to move upward, or moving downward slow to stop (for both accel., \mathbf{a} is positive)
Elevator Floor's force on your feet is LARGER than your weight. Compression of body is GREATER than normal.

At highest point you --

begin to move downward, or reduce upward motion to stop. (for accel., \mathbf{a} is negative)
Elevator Floor's force on your feet is SMALLER than your weight. Compression of body is LOWER than normal.

3. Which statement is true about gravity?

- (a) Affected by Earth's gravity, the larger of two masses has the larger acceleration.
- (b) There is no gravitational force on an astronaut in orbit around the Earth.
- (c) The Earth's gravitational force alone cannot be felt by a human being.
- (d) The gravitational force between two masses is linear in the separation distance.
- (e) The Earth's gravitational force is zero on a mass on the dark side of the moon.

4. How heavy do you feel in an elevator, moving downward at 5m/s, that stops in 0.5sec?

When moving downward with a constant speed and direction, the forces acting on your body are BALANCED, $\mathbf{F}_{net} = 0 = \mathbf{W} + \mathbf{C}$, with $\mathbf{W} = -mg$.

$$\mathbf{W} = -mg ; \mathbf{C} = +mg$$

Find the compression force acting on your feet for the stopping elevator. To stop, the elevator floor must supply an additional upward force, \mathbf{F} , acting on your body.

$$\mathbf{W} = -mg ; \mathbf{C} = +mg + \mathbf{F}$$

Unbalanced force, \mathbf{F} , causes upward acceleration, \mathbf{a} .

Use Motion Equation 1: $\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$, to solve for acceleration.

$$\mathbf{a} = \frac{\mathbf{v} - \mathbf{v}_0}{t} = \frac{0 - (-5 \text{ m/s})}{0.5 \text{ s}} = +10 \text{ m/s}^2 (= +g)$$

Use 2nd law to determine the unbalanced force:

$$\mathbf{F} = m\mathbf{a} = m(+g)$$

$$\begin{aligned} \mathbf{C} &= (+mg) + \mathbf{F} \\ &= (+mg) + (+mg) = +2mg \end{aligned}$$

a) 20% heavier b) 20% lighter c) 50% heavier d) 50% lighter e) twice as heavy

Show work for all questions.

Attach extra sheets if necessary.

5. A wheel shown at the right is turning rapidly in a shallow pan of water and throws water droplets off at various points around the circle. At which point is a drop released from the wheel if its initial motion is straight upward?

(a), (b), (c), (d), (e)

Wheel turns in a shallow pan of water.

Droplet moves in direction it had when leaving the wheel!

6. When a moving mass hits a spring attached to a wall it compresses the spring. Which statement below is false?

- a) the magnitude of the force on the wall is the same as the magnitude of the force on the mass.
- b) the mass is compressed where it touches the spring
- c) the mass will have an acceleration during the compression.
- d) the magnitude of the force on the mass is the same as the magnitude of force on the spring
- e) the mass has a uniform compression force within it.

7. The net force acting on a person is non-zero in which case below?

- a) falling at a constant velocity.
- b) lying on a soft mattress.
- c) lying on a bed of 10,000 nails.
- d) floating on the water in a pool.
- e) none of the above