October 1st

Circuits - Chapter 28

How to Analyze Complex Circuits

- Kirchhoff's junction rule (or current law) -
- From conservation of charge
- Sum of currents entering a junction is equal to sum of currents leaving that junction
- Kirchhoff's loop rule (or voltage law) -
- From conservation of energy
- Sum of changes in potential going around a complete circuit loop equals zero

Circuits (Figs. 28-9a, 28-9b)

- What is i through the battery?
- Label currents. New label for every branch. Pick any arbitrary direction.

- i through R_{1} or R_{4} is same as for battery
- Can use loop rule

$$
\mathrm{E}-i_{1} R_{1}-i_{2} R_{2}-i_{1} R_{4}=0
$$

Circuits (Figs. 28-9a, 28-9b)

- $i_{1} R_{1}-i_{2} R_{2}-i_{1} R_{4}=0$
- Equation has 2 unknowns so need to apply loop rule again

(a)

$$
\begin{aligned}
& i_{1}=i_{2}+i_{3} \\
& -\left(i_{1}-i_{2}\right) R_{3}+i_{2} R_{2}=0 \\
& i_{2}=-\frac{i_{1} R_{3}}{\left(R_{3}+R_{2}\right)}
\end{aligned}
$$

Circuits (Figs. 28-9a, 28-9b)

Now solve for i_{1} :

$$
\begin{aligned}
& -i_{1} R_{1}-i_{2} R_{2}-i_{1} R_{4}=0 \\
& -i_{1} R_{1}-\frac{i_{1} R_{3} R_{2}}{\left(R_{2}+R_{3}\right)}-i_{1} R_{4}=0
\end{aligned}
$$

$$
i_{1}=\frac{R_{2} R_{3}}{R_{1}+\frac{R_{4}}{\left(R_{2}+R_{3}\right)}}
$$

(a)

Circuits (Figs. 28-9a, 28-9b)

- What is current Voltage lost (V) in R_{2} ?
- Recall that $\mathrm{V}=\mathrm{i} \mathrm{R}$

(a)

$$
V_{2}=i_{2} R_{2}
$$

$$
\begin{aligned}
& -i_{1} R_{1}-i_{2} R_{2}-i_{1} R_{4}=0 \quad i_{1}=\frac{R_{2}}{R_{1}+\frac{R_{2} R_{3}}{\left(R_{2}+R_{3}\right)}+R_{4}} \\
& i_{2}=\frac{i_{1} R_{1}+i_{1} R_{4}-}{R_{2}}
\end{aligned}
$$

Circuits (Fig. 28-13)

- Circuits where current varies with time
- RC series circuit - a resistor and capacitor are in series with a battery and a switch
- At $t=0$ switch is open and capacitor is uncharged so $q=0$

Circuits (Fig. 28-13)

- Close the switch at point a
- Charge flows (current) from battery to capacitor, increasing q on plates and V across plates

- When V_{C} equal $V_{\text {battery }}$ flow of charge stops (current is zero) and charge on capacitor is

$$
q=C V=C E
$$

Circuits (Fig. 28-13)

- Want to know how q and V of capacitor and i of the circuit change with time when charging the capacitor
- Apply loop rule, traversing
 clockwise from battery

$$
\mathrm{E}-i R-\frac{q}{C}=0
$$

Circuits (Fig. 28-13)

$$
E-i R-\frac{q}{C}=0
$$

- Contains 2 of the variables we want i and q
- Remember

$$
i=\frac{d q}{d t}
$$

- Substituting gives $R \frac{d q}{d t}+\frac{q}{C}=\mathrm{E}$

Circuits (Fig. 28-14a)

$$
R \frac{d q}{d t}+\frac{q}{C}=\mathrm{E}
$$

- Need a function which satisfies initial condition
 $q=0$ at $t=0$ and final condition of $q=C E$ at $t=\infty$
- For charging a capacitor $q=C E\left(1-e^{-t / R C}\right)$

Circuits (Fig. 28-14b)

$$
q=C E\left(1-e^{-t / R C}\right)
$$

- Want current as a function of time
- For charging a capacitor

$$
i=\frac{d q}{d t}=\left(\frac{\mathrm{E}}{R}\right) e^{-t / R C}
$$

Circuits (Fig. 28-13)

$$
q=C E\left(1-e^{-t / R C}\right)
$$

- Want V across the capacitor as function of time

- For charging a capacitor

$$
V_{C}=\frac{q}{C}=\mathrm{E}\left(1-e^{-t / R C}\right)
$$

Circuits (Fig. 28-13)

- Want to know how q of capacitor and i of the circuit change with time when discharging the capacitor
- At new time $t=0$, throw
 switch to point b and discharge capacitor through resistor R

Circuits (Fig. 28-13)

- Apply the loop rule again but this time no battery

$$
-i R-\frac{q}{C}=0
$$

- Substituting for i again
 gives differential equation

$$
R \frac{d q}{d t}+\frac{q}{C}=0
$$

Circuits (Fig. 28-13)

$$
R \frac{d q}{d t}+\frac{q}{C}=0
$$

- Solution must satisfy initial condition that $q_{0}=C V_{o}$

- For discharging a capacitor

$$
q=q_{0} e^{-t / R C}
$$

Circuits (Fig. 28-13)

$$
q=q_{0} e^{-t / R C}
$$

- Find i for discharging capacitor with initial
 condition at $i_{O}=V_{d} / R=$ $q d R C$ at $t=0$

$$
i=\frac{d q}{d t}=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C}
$$

Negative sign means charge is decreasing

Circuits

- Charging capacitor

$$
\begin{aligned}
& q=C E\left(1-e^{-t / R C}\right) \\
& i=\left(\frac{E}{R}\right) e^{-t / R C}
\end{aligned}
$$

- Discharging capacitor

$$
q=q_{0} e^{-t / R C}
$$

$$
i=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C}
$$

- Define capacitive time constant greater τ, greater (dis)charging time

$$
\tau=R C
$$

