October 13th

Magnetic Fields Due to Currents

Chapter 30

Review

- Set up a B field in two ways:
- Intrinsic magnetic field
- Magnetic field of electrons in a material add together to give a net magnetic field around the material - i.e. permanent magnet
- Electrically charged particles which are moving - i.e. current

(a) in a wire

B Fields from Currents (Fig. 30-1)

- E field produced by a distribution of charges

$$
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}}
$$

- B field produced by distribution of currents

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

B Fields from Currents (Fig. 30-1b)

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- Current-length element,

$$
i d \vec{s}
$$

is product of a scalar and a vector.

- Find net B field by
 integrating.
- A new constant - Permeability constant, μ_{0}

$$
\mu_{0}=4 \pi \times 10^{-7} T \cdot m / A
$$

Review

- Biot-Savart Law

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- In vector form

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

Review

- For a distance R away from a long straight wire, which carries current i, the B field is:

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

- B field forms concentric rings whose direction is given by the right-hand rule.
- Magnitude of B decreases with distance as $1 / R$ (so spacing of the lines deceases)

B Fields from Currents (Fig. 30-6)

- B field at the center of an arc is

$$
B=\frac{\mu_{0} i \phi}{4 \pi R}
$$

- Express ϕ in radians not in degrees
- For a complete loop ($\phi=2 \pi$) then B is

$$
B=\frac{\mu_{0} i}{2 R}
$$

B Fields from Currents (Fig. 30-7)

- Calculate the B field at point C
- Use Biot-Savart law

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- Simplify problem by separating into 3 parts - sides 1, 2 \& 3
- Side 1 - straight section on the left
- Side 2 - straight section on the right
- Side 3 - circular arc

B Fields from Currents (Fig. 30-7)

- Side 1 - Angle, θ, between $d s$ and r is zero so

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin 0}{r^{2}}=0
$$

$$
B_{1}=0
$$

B Fields from Currents (Fig. 30-7)

- Side 3 - circular arc
- Just derived B field at center of arc as

$$
B=\frac{\mu_{0} i \phi}{4 \pi R}
$$

- Given that $\phi=\pi / 2$ so

$$
B_{3}=\frac{\mu_{0} i(\pi / 2)}{4 \pi R}=\frac{\mu_{0} i}{8 R}
$$

- Use right-hand rule to find that B_{3} is directed into page

B Fields from Currents (Fig. 30-7)

- Find net B field by combining the 3 fields
- Remember they combine as vectors!

$$
B_{1}=0
$$

$$
B_{2}=0
$$

$$
B_{3}=\frac{\mu_{0} i}{8 R}
$$

- Total B field is into the page and has magnitude

$$
B=\frac{\mu_{0} i}{8 R}
$$

Checkpoint \#1

- Three circuits with same i and various circular arcs of half (π) or quarter circles ($\pi / 2$) and radii r, $2 r$ and $3 r$. Rank magnitude of B field produced at the center (the dot), greatest first.

(c)
- For all straight sections $\theta=0$ or $\theta=180$ so

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}=0
$$

Checkpoint \#1

- Recall B field at center of circular arc
- Find magnitude of B field for each arc

$$
B=\frac{\mu_{0} i \phi}{4 \pi R}
$$ and then at the end add them as vectors

(a)

(b)

(c)

- All circuits have large upper arc ($R=3 r$) with B field

$$
B_{1}=\frac{\mu_{0} i \phi}{4 \pi R}=\frac{\mu_{0} i \pi}{4 \pi(3 r)}=\frac{\mu_{0} i}{12 r}
$$

Checkpoint \#1

(a)

(b)

$B=\frac{\mu_{0} i \phi}{4 \pi R}$

- Circuits $\mathrm{a} \& \mathrm{~b}$ each have small ($R=r$) half arc

$$
B_{2}=\frac{\mu_{0} i \pi}{4 \pi r}=\frac{\mu_{0} i}{4 r}
$$

- Circuit c has a small and medium ($R=2 r$) quarter arc

$$
B_{3}=\frac{\mu_{0} i(\pi / 2)}{4 \pi r}=\frac{\mu_{0} i}{8 r}
$$

$$
B_{4}=\frac{\mu_{0} i(\pi / 2)}{4 \pi(2 r)}=\frac{\mu_{0} i}{16 r}
$$

- Assume i is flowing counterclockwise
- Use right-hand rule to find direction of B
- For all upper arcs (1) B field is out of page
- For circuit a
- Small arc: B field is also out of page so

$$
B_{a}=B_{1}+B_{2}=\frac{\mu_{0} i}{12 r}+\frac{\mu_{0} i}{4 r}=\frac{\mu_{0} i}{3 r}
$$

- For circuit b

(b)

4 (c)

- Small arc, B field is into page so

$$
B_{b}=B_{1}-B_{2}=\frac{\mu_{0} i}{12 r}-\frac{\mu_{0} i}{4 r}=-\frac{\mu_{0} i}{6 r}
$$

- Negative sign means net B field points into page
- For circuit c

$$
B_{c}=B_{1}+B_{3}+B_{4}=\frac{\mu_{0} i}{12 r}+\frac{\mu_{0} i}{16 r}+\frac{\mu_{0} i}{8 r}=\frac{13 \mu_{0} i}{48 r}
$$

Checkpoint \#1

(a)

(b)

(c)

- Net B field for each circuit is

$$
B_{a}=\frac{\mu_{0} i}{3 r} \quad B_{b}=-\frac{\mu_{0} i}{6 r} \quad B_{c}=\frac{13 \mu_{0} i}{48 r}
$$

- Rank magnitude of B field, greatest first

$$
a, c, b
$$

B Fields from Currents (Figs. 30-2)

- Wire with a current produces a B field

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

- What happens if we bring two wires, each carrying a current, near each other?
- Will it matter if the currents are in the same direction or opposite each other?

