October 14th

Magnetic Fields Due to Currents

Chapter 30

B Fields from Currents (Figs. 30-2)

- Wire with a current produces a B field

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

- What happens if we bring two wires, each carrying a current, near each other?
- Will it matter if the currents are in the same direction or opposite each other?

B Fields from Currents (Figs. 30-9)

- What is the force, $F_{\boldsymbol{b a}}$ on wire b due to the current in wire a ?
- Wires are separated by a distance, d, and have
 currents, i_{a} and i_{b}
- First calculate B field from wire a at the site of

$$
B_{a}=\frac{\mu_{0} i_{a}}{2 \pi d}
$$ wire b

B Fields from Currents (Figs. 30-9)

- Using right-hand rule find that the B_{a} field is directed down

$$
B_{a}=\frac{\mu_{0} i_{a}}{2 \pi d}
$$

- Now calculate force $F_{b \boldsymbol{a}}$ on wire b using

$$
\vec{F}_{b a}=i_{b} \vec{L} \times \vec{B}_{a}
$$

- Where the current i_{b} is current in wire b
- B field is from wire a
- L is length of wire b

B Fields from Currents (Figs. 30-9)

- Current i_{b} and B_{a} are \perp to each other

$$
F_{b a}=i_{b} L B_{a} \sin 90
$$

- Substituting B_{a}

$$
\begin{gathered}
B_{a}=\frac{\mu_{0} i_{a}}{2 \pi d} \\
F_{b a}=\frac{\mu_{0} L i_{a} i_{b}}{2 \pi d}
\end{gathered}
$$

- Applying right-hand rule, direction of $F_{b a}$ is towards wire a

B Fields from Currents (Figs. 30-9)

- What is the force, $F_{a b}$ on wire a due to the current in wire b ?
- Calculate B field from wire b at site of wire a

$$
B_{b}=\frac{\mu_{0} i_{b}}{2 \pi d}
$$

- Force on a from b is

$$
F_{a b}=i_{a} L B_{b}=\frac{\mu_{0} L i_{a} i_{b}}{2 \pi d}
$$

- Apply right-hand rule and find $F_{a b}$ has same magnitude as $F_{b \boldsymbol{b}}$ but opposite direction

B Fields from Currents (Figs. 30-9)

- What happens if we flip current in wire a so that its moving opposite to the current in wire b ?
- Use right-hand rules

- B_{a} points up
- $F_{\boldsymbol{b a}}$ points away from wire a
- Parallel currents attract, anti-parallel currents repel

Checkpoint \#2

- Three long, straight, parallel wires are equally spaced with identical currents, either into or out of page. Rank the wires according to the magnitude of the force on each wire due to the currents in the other two wires, greatest first.

Checkpoint \#2

©
c

- What's the force on wire a due to wires b and c ?
- First find net B field at a from wires b and c
- Calculate magnitude for B_{b} and B_{c}
- Use right-hand rule to find direction B_{b} and B_{c}

$$
B=\frac{\mu_{0} i}{2 \pi d}
$$

- Add B_{b} and B_{c} as vectors to get $B_{b c}$
- Find force on wire a with

$$
\vec{F}_{a b c}=i_{a} \vec{L} \times \vec{B}_{b c}
$$

Checkpoint \#2

$\stackrel{\otimes}{c}$

- What's the force on wire a due to wires b and c ?
- B_{b} at a is down
- B_{c} at a is up

$$
B_{b}=\frac{\mu_{0} i_{b}}{2 \pi d} \quad B_{c}=\frac{\mu_{0} i_{c}}{2 \pi(2 d)}
$$

$$
B_{b}>B_{c}
$$

- Net B field is

$$
B_{b c}=\frac{\mu_{o} i}{2 \pi d}-\frac{\mu_{0} i}{4 \pi d}=\frac{\mu_{0} i}{4 \pi d}
$$

- Force is

$$
F_{a b c}=i_{a} L B_{b c}=\frac{\mu_{0} i^{2} L}{4 \pi d}
$$

Checkpoint \#2

-What's the force on wire b due to wires a and c ?

- B_{a} at b is up
- B_{c} at b is up

$$
B_{a}=B_{c}
$$

- Net B field is

$$
\begin{aligned}
& B_{a}=\frac{\mu_{0} i_{a}}{2 \pi d} \quad B_{c}=\frac{\mu_{0} i_{c}}{2 \pi d} \\
& B_{a c}=\frac{\mu_{o} i}{2 \pi d}+\frac{\mu_{0} i}{2 \pi d}=\frac{\mu_{0} i}{\pi d}
\end{aligned}
$$

- Force is

$$
F_{b a c}=i_{b} L B_{a c}=\frac{\mu_{0} i^{2} L}{\pi d}
$$

Checkpoint \#2

a

b
$B_{a} \uparrow{ }^{1} B_{b}$

- What's the force on wire c due to wires a and b ?
- B_{a} at c is up
- B_{b} at c is up

$$
B_{a}=\frac{\mu_{0} i_{a}}{2 \pi(2 d)} \quad B_{b}=\frac{\mu_{0} i_{b}}{2 \pi d}
$$

$$
B_{b}>B_{a}
$$

- Net B field is

$$
B_{a b}=\frac{\mu_{o} i}{2 \pi d}+\frac{\mu_{0} i}{4 \pi d}=\frac{3 \mu_{0} i}{4 \pi d}
$$

- Force is

$$
F_{c a b}=i_{c} L B_{a b}=\frac{3 \mu_{0} i^{2} L}{4 \pi d}
$$

Checkpoint \#2

0
a
0
b
©
c

- Forces on each wire due to other two are:

$$
\begin{gathered}
F_{a b c}=i_{a} L B_{b c}=\frac{\mu_{0} i^{2} L}{4 \pi d} \quad F_{b a c}=i_{b} L B_{a c}=\frac{\mu_{0} i^{2} L}{\pi d} \\
F_{c a b}=i_{c} L B_{a b}=\frac{3 \mu_{0} i^{2} L}{4 \pi d} \\
\text { b, c, a }
\end{gathered}
$$

Review

- For certain symmetric distributions of charge we used Gauss' law to calculate the E field

$$
\oint \vec{E} \bullet d \vec{A}=\frac{q_{e n c}}{\varepsilon_{0}}
$$

- This is an integral over the Gaussian surface \boldsymbol{A}

B Fields from Currents (Fig. 30-11)

- For symmetric distributions of charge use Ampere's law to

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$ calculate B field

- Integral around closed loop called Amperian loop

B Fields from Currents (Fig. 30-12)

- Use the right-hand rule to determine the signs for the currents encircled by the Amperian loop
- Curl right hand around Amperian loop with fingers pointing in direction of integration
- Current going through loop in the same direction as thumb is positive.
- Current going in the opposite direction is negative.

Checkpoint \# 3

- Rank the loops according to the magnitude of $\oint \vec{B} \bullet d \vec{s}$ Assume loops are counterclockwise:

$$
a: i_{\text {enc }}=\mathrm{i}+\mathrm{i}-\mathrm{i}=\mathrm{i}
$$

$$
\mathrm{b}: \mathrm{i}_{\mathrm{enc}}=\mathrm{i}-\mathrm{i}=0
$$

c: $\mathrm{i}_{\text {enc }}=-\mathrm{i}$
$\mathrm{d}: \mathrm{i}_{\mathrm{enc}}=\mathrm{i}+\mathrm{i}=2 \mathrm{i}$
d, a \& C, b
$\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}$
(a \& c tie: same magnitude)

B Fields from Currents (Fig. 30-13)

- Use Ampere's law to calculate B field from long straight wire

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

- Draw Amperian loop as a circle surrounding the wire (like the magnetic field lines)

- At every point of the loop
- Magnitude of B is constant
- B and $d s$ are I| (both tangent to the circle)

B Fields from Currents (Fig. 30-13)

- B and $d s$ are ll so

$$
\cos \theta=\cos 0=1
$$

$$
\vec{B} \bullet d \vec{s}=B d s
$$

- B constant on loop so

$$
\oint \vec{B} \bullet d \vec{s}=B \oint d s
$$

$$
\oint \vec{B} \bullet d \vec{s}=B(2 \pi r)
$$

$$
\oint d s=2 \pi r
$$

B Fields from Currents (Fig. 30-13)

- Ampere's law becomes

$$
B(2 \pi r)=\mu_{0} i_{e n c}
$$

- Current enclosed is just i so

$$
B=\frac{\mu_{0} i}{2 \pi r}
$$

- Same result as with Biot-Savart law (we used $r=R$ before).

