October 15th

Magnetic Fields Due to Currents

Chapter 30

Review (Fig. 30-9)

- Current carrying wires will exert a force on one another
- Calculate B field from wire a at site of wire b

$$
B_{a}=\frac{\mu_{0} i_{a}}{2 \pi d}
$$

- Force on b from a is $F_{b a}=i_{b} L B_{a}=\frac{\mu_{0} L i_{a} i_{b}}{2 \pi d}$
- Parallel currents attract, anti-parallel currents repel

B Fields from Currents (Fig. 30-11)

- For symmetric distributions of charge use Ampere's law to

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$ calculate B field

- Integral around closed loop called Amperian loop

B Fields from Currents (Fig. 30-13)

- Use Ampere's law to calculate B field from long straight wire

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

- Draw Amperian loop as a circle surrounding the wire (like the magnetic field lines)

- At every point of the loop
- Magnitude of B is constant
- B and $d s$ are I| (both tangent to the circle)

B Fields from Currents (Fig. 30-13)

- Ampere's law becomes

$$
B(2 \pi r)=\mu_{0} i_{e n c}
$$

- Current enclosed is just i so

$$
B=\frac{\mu_{0} i}{2 \pi r}
$$

- Same result as with Biot-Savart law (we used $r=R$ before).

B Fields from Currents (Figs. 30-16,20)

- What happens if there are several loops of wire put together?
- A long, tightly wound helical coil of wire is called a solenoid
- Bend solenoid so ends meet to make a hollow donut gives a toroid

- Use Ampere's law to calculate B field for a solenoid and a toroid

B Fields from Currents (Fig. 30-17)

Solenoid's B field is vector sum of fields produced by each turn (loop) in solenoid

B Fields from Currents (Fig. 30-17)

- Near each loop it looks like an infinite straight wire
- Between the loops fields tend to cancel
- Inside the solenoid, far from the wire, B field is parallel to axis

- An ideal solenoid
- is infinity long with closely packed turns of wire
- has uniform B field which is parallel to solenoid axis

B Fields from Currents (Fig. 30-17)

- For points outside the solenoid B fields from the upper parts of the turns tend to cancel the lower
- Ideal solenoid $B_{\text {outside }}=0$
- For a real solenoid can assume $B_{\text {outside }}=0$ if
- length >> diameter
- Only consider points not near ends of solenoid

- Use right-hand rule to find direction of B field
- Grasp solenoid so fingers follow direction of i in loops, thumb points in B

B Fields from Currents (Fig. 30-19)

- Use Ampere's law to calculate B field of ideal solenoid

- Draw Amperian loop a-b-c-d-a intersecting solenoid

B Fields from Currents (Fig. 30-19)

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

- Integral can be written as sum of four integrals, one for each side

$$
\begin{aligned}
& \oint \vec{B} \bullet d \vec{s}=\int_{a}^{b} \vec{B} \bullet d \vec{s}+\int_{b}^{c} \vec{B} \bullet d \vec{s} \\
& +\int_{c}^{d} \vec{B} \bullet d \vec{s}+\int_{d}^{a} \vec{B} \bullet d \vec{s}
\end{aligned}
$$

B Fields from Currents (Fig. 30-19)

- First integral B field is \|l to $d s$

$$
\int_{a}^{b} \vec{B} \bullet d \vec{s}=B[s]_{a}^{b}=B h
$$

- For sides bc and da B is \perp to $d s$ so

$$
\int_{b}^{c} \vec{B} \bullet d \vec{s}=\int_{d}^{a} \vec{B} \bullet d \vec{s}=0
$$

- For the length outside the solenoid $B=0$

$$
\int_{c}^{d} \vec{B} \bullet d \vec{s}=0
$$

$$
\oint \vec{B} \bullet d \vec{s}=B h
$$

B Fields from Currents (Fig. 30-19)

- Now need to find amount of current enclosed

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

- Single coil has current i
- But Amperian loop encloses several coils so total current is

$$
i_{e n c}=i n h
$$

- where n is the number of turns per unit length

$$
n=\frac{N}{L}
$$

- $N=$ total \# of turns
- $L=$ length

B Fields from Currents (Fig. 30-19)

- Substituting into Ampere's law

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

$$
B h=i n h
$$

- B field of solenoid
- does not depend on diameter or length of solenoid

$$
B=\mu_{0} i n
$$

$$
N \bullet \text { is uniform over its }
$$

- n is total \# of turns (N) / length (L)

$$
n=\frac{1}{L}
$$

B Fields from Currents (Fig. 30-20)
 - Calculate B field for a toroid using Ampere's law

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \dot{l}_{e n c}
$$

- Choose Amperian loop to be a concentric circle inside toroid
- B and $d s$ are parallel along entire loop so

$$
\oint \vec{B} \bullet d \vec{s}=B \int d s=B(2 \pi r)
$$

(b)

B Fields from Currents (Fig. 30-20)

- Current enclosed by loop is

$$
i_{e n c}=i N
$$

(a)

$$
\begin{aligned}
& \oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c} \\
& B(2 \pi r)=\mu_{0} i N
\end{aligned}
$$

- B field for toroid is

$$
B=\frac{\mu_{0} i N}{2 \pi r}
$$

B Fields from Currents (Fig. 30-20)

- Toroid - B field is not constant over its cross section

$$
B=\frac{\mu_{0} i N}{2 \pi} \frac{1}{r}
$$

- $\mathrm{N}=$ total \# of turns
- Use right-hand rule to find direction of B field
- Grasp toroid with fingers in direction of current in windings, thumb points in B
- $B=0$ outside toroid

(b)

B Fields from Currents (Fig. 30-14)

- Calculate B field inside a long straight wire

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

- Again B and $d s$ are ||
 and B is a constant so

$$
\oint \vec{B} \bullet d \vec{s}=B \oint d s=B(2 \pi r) \quad B(2 \pi r)=\mu_{0} i_{e n c}
$$

B Fields from Currents (Fig. 30-14)

- Need to find $i_{\text {enc }}$
- Current is uniformly distributed so i enclosed by loop is α to area enclosed

$$
i_{e n c}=i \frac{\pi r^{2}}{\pi R^{2}}
$$

$$
B(2 \pi r)=\mu_{0} i \frac{\pi r^{2}}{\pi R^{2}}
$$

Chapter 30 - Problem 38P

- A long circular pipe with outside radius R carries a uniformly distributed current i into the page. A wire runs parallel to the pipe at a distance of 3 R from center to center. Find the magnitude and direction of the current in the wire such that the net magnetic field at point P has the same magnitude as the net magnetic field at the center of the pipe but is in the

