October 2nd/3rd

Magnetic Fields - Chapter 29

- Analogous to electric field, a magnet produces a magnetic field, B
- Set up a *B* field two ways:
- Moving electrically charged particles
 - Current in a wire
- Intrinsic magnetic field
 - Basic characteristic of elementary particles such as an electron

- Magnetic field lines
- Direction of tangent to field line gives direction of *B* at that point
- Denser the lines the stronger the *B* field

 Magnetic field lines enter one end (south) of magnet and exit the other end (north)

- Opposite magnetic poles attract
- like magnetic poles repel

Like the electric field lines, but there are no "magnetic charges"

Magnetic fields

This shows the tips of magnetic field vector lines (green) pointed out of the screen (towards you).

×	\overrightarrow{B}	×	
×		×	

This shows the tails of magnetic field vector lines (black) pointed into the screen (away from you).

• When charged particle moves through B field, a force acts on the particle

$$\vec{F}_B = q\vec{v} \times \vec{B}$$

- Magnitude of F_B is $F_B = |q| vB \sin \phi$
- where \u03c6 is the angle between \u03c8 and B
- SI unit for *B* is tesla, T

$$1T = 1\frac{N}{C \cdot m/s} = 1\frac{N}{A \cdot m}$$

W

- Particle is stationary
- ν and *B* are parallel (ϕ =0) or anti-parallel (ϕ =180)
- F_B is maximum if
 - ν and *B* are \perp to each other

$$\vec{F}_B = q\vec{v} \times \vec{B}$$

• F_B acting on charged particle is always \perp to ν and B

- F_B never has component || to ν
- F_B cannot change ν or K.E. of particle
- F_B can only change direction of ν

- Right-hand rule For positive charges - when the fingers sweep ν into *B* through the smaller angle ϕ the thumb will be pointing in the direction of F_B
- For negative charges F_B points in opposite direction

- What is the direction of F_B on the particle with the ν and B shown?
- Use right-hand rule don't forget charge

A) +z
B) -x
C) zero
$$\vec{F}_B$$

$$\vec{F}_B = q\vec{v} \times \vec{B}$$

Magnetic Fields

Check yourself using matrix notation
Write vectors for *v* and *B*

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = (a_y b_z - b_y a_z)\hat{i} - (a_x b_z - b_x a_z)\hat{j} + (a_x b_y - b_x a_y)\hat{k}$$

Magnetic Fields

 What happens if there is both an *E* field and a *B* field?

 Both fields produce a force on a charged particle

 If the two fields are ⊥ to each other call them crossed fields

- Cathode ray tube used in television
- Can deflect a beam of electrons by
 - *E* field from charged parallel-plates
 - B field from magnet
- Adjust *E* and *B* fields to move electron beam across fluorescent screen

Checkpoint #2

- *E* field out of page, *B* field to left
- A) Rank 1,2, and 3 by magnitude of net F on particle, greatest first
- What direction is F_E for 1?

Out of page

YES

 Is it the same for all directions of v?

Checkpoint #2

- A) Rank magnitude of net *F* for 1, 2 and 3.
 2, then 1 & 3 tie
- B) Which direction could have net F of zero?
 Direction 4

- Electrons moving in a wire. In this case the wire is a rectangular slab with width, *d*, and thickness, *l*.
- The total cross sectional area of the wire is *A=I d*.
- *B* field points into the screen.

- Electrons moving in a wire (= current) can be deflected by a *B* field called the Hall effect
- Creates a Hall potential difference, V, across the wire
- Can measure the wire's charge density when at equilibrium $F_E = F_B$

- Electrons have drift velocity, v_d in direction opposite the current, i
- B field into page causes force, F_B to right
- Electrons pile up on right hand side of strip
- Leaves + charges on left and produce an *E* field inside the strip pointing to right

- *E* field on electron produces a *F_E* to the left
- Quickly have equilibrium where $F_E = F_B$
- *E* field gives a *V* across the strip

$$V = Ed$$

 Left side is at a higher potential

 Can measure the number of charge carriers per unit volume, n, at equilibrium

$$F_E = F_B$$

$$F_E = qE \quad F_B = |q\vec{v} \times \vec{B}|$$

$$eE = ev_d B\sin(90)$$

$$E = v_d B$$

×

×

Low

×

• Remember from Chpt. 27
that drift speed is
$$v_{d} = \frac{J}{ne} = \frac{i}{neA}$$

$$E = v_{d} B = \frac{iB}{neA}$$

$$a = \frac{iB}{neA}$$

$$a = \frac{iB}{EeA}$$

Finally get

$$n = \frac{iB}{Vle}$$

