Review

- Magnetic flux
 \[\Phi_B = \int \vec{B} \cdot d\vec{A} \]

- Faraday’s law (one loop) for emf (E) (induced voltage)
 \[\mathcal{E} = -\frac{d\Phi_B}{dt} \]

- Faraday’s law (N loops)
 \[\mathcal{E} = -N \frac{d\Phi_B}{dt} \]

- Lenz’s law – induced emf gives rise to a current whose \(B \) field opposes the change in flux that produced it
Review

- Induced emf of a conductor moving with velocity, \(v \), in a \(\perp B \) field is given by
 \[\mathcal{E} = BLv \]

- Induced current in loop in a \(B \) field experiences a force
 \[F_B = iL \times \vec{B} \]

- Found \(F_1 \) opposes your force \(F_{app} \)
 \[\vec{F}_{app} = -\vec{F}_1 \]

- Work you do in pulling the loop appears as thermal energy in the loop
Inductance

- **Generators** – convert mechanical energy to electrical energy
- External agent rotates loop of wire in B field
 - Hydroelectric plant
 - Coal burning plant
- Changing Φ_B induces an emf and current in an external circuit
Inductance

- **Alternating current (ac) generator**
 - Ends of wire loop are attached to slip rings which rotate with loop
 - Stationary metal brushes are in contact with slip rings and connected to external circuit
 - emf and current in circuit alternate in time
Inductance

- Calculate emf for generator with N turns of area A and rotating with constant angular velocity, \(\omega \)
- Magnetic flux is
 \[
 \Phi_B = \int \vec{B} \cdot d\vec{A} = BA \cos \theta
 \]
- Relate angular displacement to angular velocity
 \[\theta = \omega t\]
- Flux through one loop is
 \[
 \Phi_B = BA \cos \omega t
 \]
Inductance

- Faraday’s law says
 \[\mathcal{E} = -N \frac{d\Phi_B}{dt} \]

- Substitute
 \[\Phi_B = BA \cos \omega t \]

 \[\mathcal{E} = -NBA \frac{d}{dt} (\cos \omega t) \]

 \[\mathcal{E} = NBA \omega \sin \omega t \]

- Maximum emf is when \(\omega t = 90 \) or 270 degrees
 \[\mathcal{E}_{\text{max}} = NBA \omega \]

- Emf is 0 when \(\omega t = 0 \) or 180 degrees
Inductance

- **Direct current (dc) generator**
 - Ends of loop are connected to a single split ring
 - Metal brush contacts to split ring reverse their roles every half cycle
 - Polarity of induced emf reverses but polarity of split ring remains the same

- Not suitable for most applications
 - Can use to charge batteries
 - Commercial dc gen. use out of phase coils
Inductance

- **Motors** – converts electrical energy to mechanical energy
 - Generator run in reverse
 - Current is supplied to loop and the torque acting on the current-carrying loop causes it to rotate
 - Do mechanical work by using the rotating armature
 - As loop rotates, changing B field induces an emf
 - Induced emf (back emf) reduces the current in the loop – remember Lenz’s law
 - Power requirements are greater for starting a motor and for running it under heavy loads
Review for Inductance

- **Inductor** is a device used to produce and store a desired B field (e.g. solenoid).
- A current i in an inductor with N turns produces a magnetic flux, Φ_B, in its central region.
- **Inductance**, L is defined as
 \[L = \frac{N\Phi_B}{i} \]

- Inductance per unit length of a solenoid:
 - Depends only on geometry of device (like capacitor)
 \[\frac{L}{l} = \mu_0 n^2 A \]
Inductance

- A changing current in a coil generates a self-induced emf, ε_L in the coil.
- Process is called self-induction.
- Change current in coil using a variable resistor, ε_L will appear in coil only while the current is changing.

\[L = \frac{N\Phi_B}{i} \]

\[\mathcal{E}_L = -N \frac{d\Phi_B}{dt} = - \frac{d(N\Phi_B)}{dt} = - \frac{d(Li)}{dt} = -L \frac{di}{dt} \]
Inductance

- Induced emf only depends on rate of change of current, not its magnitude.
- Direction of ε_L follows Lenz’s law and opposes the change in current.
- Self-induced V_L across inductor:
 - Ideal inductor: $V_L = \varepsilon_L$
 - Real inductor (like real battery) has some internal resistance: $V_L = \varepsilon_L - iR$
Inductance

- Checkpoint #4 – Have an induced emf in a coil. What can we tell about the current through the coil? Is it moving right or left and is it constant, decreasing or increasing?

\[\mathcal{E}_L \]

Only get \(\mathcal{E}_L \) if current changing

Decreasing and rightward OR
Increasing and leftward
Inductance

- **Mutual induction** – current in one coil induces emf in other coil
- Distinguish from **self-induction**
- **Mutual inductance**, M_{21} of coil 2 with respect to coil 1 is

\[
L = \frac{N \Phi_B}{i} \quad \quad M_{21} = \frac{N_2 \Phi_{21}}{i_1}
\]
Inductance

- Faraday’s law
\[\mathcal{E}_2 = -N_2 \frac{d\Phi_{21}}{dt} \]

- Rearrange equation
\[M_{21} = \frac{N_2 \Phi_{21}}{i_1} \]

- Induced emf in coil 2 due to \(i \) in coil 1 is
\[\mathcal{E}_2 = -M_{21} \frac{di_1}{dt} \]

- Vary \(i \) with time
\[M_{21} \frac{di_1}{dt} = N_2 \frac{d\Phi_{21}}{dt} \]

- Obeys Lenz’s law (minus sign)
Inductance

- Reverse roles of coils
- What is induced emf in coil 1 from a changing current in coil 2?
- Same game as before

\[M_{12} = \frac{N_1 \Phi_{12}}{i_2} \]

\[\mathcal{E}_1 = -M_{12} \frac{di_2}{dt} \]
Inductance

- The mutual inductance terms are equal

\[M_{12} = \frac{N_1 \Phi_{12}}{i_2} \quad M_{21} = \frac{N_2 \Phi_{21}}{i_1} \quad M_{21} = M_{12} = M \]

- Rewrite emfs as

\[\mathcal{E}_2 = -M \frac{di_1}{dt} \quad \mathcal{E}_1 = -M \frac{di_2}{dt} \]

- Notice same form as self-induced emf

\[\mathcal{E}_L = -L \frac{di}{dt} \quad L = \frac{N \Phi_B}{i} \]
Faraday’s law

- If B is constant within coil
 \[\Phi_B = \int \vec{B} \cdot d\vec{A} = BA \cos \theta \]

- Change the magnetic flux and induce a current and voltage by
 - Changing magnitude of B field within coil
 \[\mathcal{E} = -N \frac{d\Phi_B}{dt} \]
 - Changing area of coil, or portion of area within B field
 \[\mathcal{E} = -N A \cos \theta \frac{dB}{dt} \]
 - Changing angle between B field and area of coil (e.g. rotating the coil)
 \[\mathcal{E} = -NBA \frac{d(cos \theta)}{dt} \]