Happy Halloween Chapter 33 LC Circuits

RC circuits (chapter 28) A resistor and capacitor in series

• Charging up a capacitor (switch to "a")

The loop rule gives

$$\mathcal{E} - iR - \frac{q}{C} = 0$$

$$\mathcal{E} = \frac{dq}{dt}R + \frac{q}{C}$$

The solution of this differential equation is:

$$q = C \mathcal{E} (1 - e^{-t/\tau_c})$$

where
$$\tau_{c} = RC$$

RC circuits (chapter 28)

 Initially the current flows easily, but then drops exponentially as the capacitor get filled up.

RC circuits (chapter 28)

 Discharging capacitor (switch to "b") gives the differential equation:

$$iR + \frac{q}{C} = 0$$

$$\frac{dq}{dt}R + \frac{q}{C} = 0$$

The solution is

$$q = q_0 e^{-t/\tau_c} \qquad \tau_C = RC$$

the current change

RL circuits (chapter 31 – Fig.17) A resistor and inductor in series

Charging up a inductor (switch to "a")
 The loop rule gives

$$\mathcal{E} - iR - L\frac{di}{dt} = 0$$

 The solution of this differential equation is:

$$i=\frac{\mathcal{E}}{R}(1-e^{-t/\tau_L})$$

is the inductive time constant

RL circuits (chapter 31 Fig. 19)

• Graphical results

$$V_R = iR = \mathcal{E} \left(1 - e^{-t/\tau_L}\right)$$

$$V_L = -L \frac{di}{dt} = \mathcal{E} e^{-t/\tau_L}$$

- Initially inductor acts to oppose changes in current (i=0).
- Long time later, inductor acts like simple wire with ($i = \varepsilon/R$).

RL circuits (chapter 31)

Circuit is opened (switch to "b")

$$-iR - L\frac{di}{dt} = 0$$

$$i = \frac{\mathcal{E}}{R} e^{-t/\tau_L} = i_0 e^{-t/\tau_L}$$

$$\tau_{L} = \frac{L}{R}$$

Energy stored in fields

 Energy stored in the electric field of a capacitor (chapter 28)

$$U_E = \frac{1}{2} \frac{q^2}{C}$$

 Energy stored in the B field of an inductor (chapter 31)

$$U_B = \frac{1}{2} Li^2$$

- LC Circuit inductor & capacitor in series
- Find *q*, *i* and *V* vary sinusoidally with period *T* (angular frequency ω)
- *E* field of capacitor and *B* field of inductor oscillate
- The energy oscillates between E field stored in the capacitor and the B field stored in the inductor

$$U_E = \frac{1}{2} \frac{q^2}{C}$$

$$U_B = \frac{1}{2}Li^2$$

• Total energy of LC circuit

$$U = U_{B} + U_{E} = \frac{Li^{2}}{2} + \frac{q^{2}}{2C}$$

$$U = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

LC Circuits (checkpoint #1)

- A charged capacitor & inductor are connected in series at time t=0. In terms of period, T, how much later will the following reach their maximums:
 - q of capacitor

T/2

- V_c with original polarity T
- Energy stored in *E* field
 T/2
- The current

T/4

Total energy of LC circuit

$$U = U_{B} + U_{E} = \frac{Li^{2}}{2} + \frac{q^{2}}{2C}$$

Total energy is constant

$$\frac{dU}{dt} = 0$$

Differentiating gives

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{Li^2}{2} + \frac{q^2}{2C} \right) = Li \frac{di}{dt} + \frac{q}{C} \frac{dq}{dt} = 0$$

• Using
$$i = \frac{dq}{dt}$$
 $\frac{di}{dt} = \frac{d^2q}{dt^2}$

• We obtain
$$L\frac{d^2q}{dt^2} + \frac{1}{C}q = 0$$

Solution is

$$q = Q\cos(\omega t + \phi)$$

 where q is the variable, Q is the amplitude (maximum value for q)

• The phase constant, ϕ , is determined by the conditions at time t=0 (or some other time)

$$q = Q\cos(\omega t + \phi)$$

• If
$$\phi = 0$$
 then at $t = 0$, $q = Q$

• I will take $\phi = 0$ for the rest of the lecture notes. To get the full result when you see ωt replace it by $\omega t + \phi$

• Charge of LC circuit $q = Q \cos(\omega t)$ • Find current by $i = \frac{dq}{dt}$

$$i = \frac{d}{dt} [Q\cos(\omega t)] = -Q\omega\sin(\omega t)$$

• Amplitude I is $I = \omega Q$

$$i = -I \sin(\omega t)$$

i = 0

C

L

• What is ω for an LC circuit?

 $q = Q \cos(\omega t)$

$$\frac{d^2q}{dt^2} = -\omega^2 Q \cos(\omega t)$$

Substitute into

$$L\frac{d^2q}{dt^2} + \frac{1}{C}q = 0$$

$$-L\omega^2 Q\cos(\omega t) + \frac{1}{C}Q\cos(\omega t) = 0$$

• Find ω for LC circuit is

$$\omega = \sqrt{\frac{1}{LC}}$$

 The energy stored in an LC circuit at any time, t

$$U = U_B + U_E$$

$$q = Q \cos(\omega t)$$

$$i = -I \sin(\omega t)$$

Substitute

$$U_{E} = \frac{q^{2}}{2C} = \frac{Q^{2}}{2C} \cos^{2}(\omega t)$$

$$U_{B} = \frac{Li^{2}}{2} = \frac{L}{2}\omega^{2}Q^{2}\sin^{2}(\omega t)$$

• Using $\omega = \sqrt{-1}$

$$U_B = \frac{Q^2}{2C} \sin^2(\omega t)$$

• Thus

$$U_{E} = \frac{Q^{2}}{2C} \cos^{2}(\omega t)$$

$$U_{B} = \frac{Q^{2}}{2C} \sin^{2}(\omega t)$$

$$\frac{Q^{2}}{2C} \int U(=U_{B}+U_{E}) \int U_{E}(t)$$

$$U_{B} = \frac{Q^{2}}{2C} \sin^{2}(\omega t)$$

Maximum value for both

$$U_{E,\max} = U_{B,\max} = Q^2/2C$$

Time

- At any instant, sum is $U = U_B + U_E = Q^2/2C$
- When $U_E = \max$, $U_B = 0$, and conversely, when $U_B = \max$, $U_E = 0$

LC Circuits (checkpoint #2)-quiz

- Capacitor in LC circuit has $V_{C,max} = 15 V$ and $U_{E,max} = 150 J$. When capacitor has $V_C = 5 V$ and $U_F = 50 J$, what are the
 - 1) emf across the inductor?
 - 2) the energy stored in the *B* field?
- Apply the loop rule
 - Net potential difference around the circuit must be zero a, b, c, d, e 1) 0, 5, 10, 15, 20 V

$$V_L(t) = V_C(t)$$

$$U_{E,\max} = U_E(t) + U_B(t)$$

i = 0

2) 0, 50, 100, 150, 200 J