October 9/10th

Magnetic Fields Due to Currents

Chapter 30

Review - Chap. 29

- Force on a charged particle due to a magnetic field is

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

- Charged particles moving with $v \perp$ to a B field move in a circular path with radius, r

$$
r=\frac{m v}{q B}
$$

- Force on a current carrying wire due to a magnetic field is

$$
\vec{F}_{B}=i \vec{L} \times \vec{B}
$$

Review

- Set up a B field in two ways:
- Intrinsic magnetic field
- Magnetic field of electrons in a material add together to give a net magnetic field around the material - i.e. permanent magnet
- Electrically charged particles which are moving - i.e. current

(a) in a wire

B Fields from Currents (Fig. 30-1)

- E field produced by a distribution of charges

$$
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}}
$$

- B field produced by distribution of currents

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

B Fields from Currents (Fig. 30-1b)

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- Current-length element,

$$
i d \vec{s}
$$

is product of a scalar and a vector.

- Find net B field by
 integrating.
- A new constant - Permeability constant, μ_{0}

$$
\mu_{0}=4 \pi \times 10^{-7} T \cdot m / A
$$

B Fields from Currents (Fig. 30-1b)

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- Rewrite in vector form

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{r}}{r^{2}}
$$

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

- Known as the Biot-Savart Law

B Fields from Currents (Fig. 30-5)

- Use Biot-Savart Law to calculate B field produced by an infinitely long straight wire with current, i

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

- Direction of $d B$ at point P is into the page for all $d s$ from $-\infty$ to $+\infty$

B Fields from Currents (Fig. 30-5)

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

Find total B field by integrating from 0 to $+\infty$ and multiplying by 2

$$
B=2 \int_{0}^{\infty} d B=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{\sin \theta}{r^{2}} d s=\frac{\mu_{0} i I}{2 \pi}
$$

Where

$$
I=\int_{0}^{\infty} \frac{\sin \theta}{r^{2}} d s
$$

B Fields from Currents (Fig. 30-5)

- Variables r, sand θ are related by

$$
r=\sqrt{s^{2}+R^{2}}
$$

$$
\sin \theta=\sin (\pi-\theta)=\frac{R}{r}
$$

$$
\sin \theta=\frac{R}{\sqrt{s^{2}+R^{2}}}
$$

B Fields from Currents (Fig. 30-5)

- Substituting

$$
\sin \theta=\frac{R}{\sqrt{s^{2}+R^{2}}}
$$

$$
B=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{\sin \theta}{r^{2}} d s=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{R d s}{\left(s^{2}+R^{2}\right)^{3 / 2}}
$$

- Using the integral relation

$$
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}
$$

B Fields from Currents (Fig. 30-5)

- Evaluating the integral gives

$$
\begin{aligned}
& B=\frac{\mu_{0} i R}{2 \pi} \int_{0}^{\infty} \frac{d s}{\left(s^{2}+R^{2}\right)^{3 / 2}} \\
& B=\frac{\mu_{0} i}{2 \pi R}\left[\frac{s}{\sqrt{s^{2}+R^{2}}}\right]_{0}^{\infty}
\end{aligned}
$$

- For a distance R from a long straight wire

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

B Fields from Currents (Fig. 30-5)

- Evaluating the integral gives

$$
I=\frac{1}{R}
$$

- Thus for a distance R from a long straight wire

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

B Fields from Currents (Figs. 30-2,5)

- Notice B field only depends on current, i, and \perp distance R from wire

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

- B field forms concentric rings
- Magnitude of B decreases with distance as $1 / R$ (so spacing of the lines deceases)

B Fields from Currents (Fig. 30-5)

- New use for right-hand rule
- Point thumb in direction of current flow

(a)
- Fingers will curl in the direction of the magnetic field lines due to current
- B field is tangent to magnetic field line

B Fields from Currents (Fig. 30-6)

- What is B field due to circular arc of wire?
- Simplify problem by finding B at center of arc, point C
- Using Biot-Savart and the fact
 that r and $d s$ are $\perp\left(\theta=90^{\circ}\right)$

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{i d s}{R^{2}}
$$

B Fields from Currents (Fig. 30-6)

- Use right-hand rule to find direction of B field at C
- Every $d s$ gives $d B$ directed out of page so
 get net B by integrating over whole arc

$$
B=\int d B=\frac{\mu_{0}}{4 \pi} \int \frac{i d s}{R^{2}}=\frac{\mu_{0} i}{4 \pi R^{2}} \int d s
$$

B Fields from Currents (Fig. 30-6)

$$
\int d s=s
$$

- Where s is the arc length related to the angle in radians by

$$
\frac{s}{2 \pi R}=\frac{\phi}{2 \pi}
$$

- Thus $\int d s=\phi R$

B Fields from Currents (Fig. 30-6)

- B field at the center of an arc is

$$
B=\frac{\mu_{0} i \phi}{4 \pi R}
$$

- Express ϕ in radians not in degrees
- For a complete loop ($\phi=2 \pi$) then B is

$$
B=\frac{\mu_{0} i}{2 R}
$$

