Review for Midterm-1

Midterm-1

- Wednesday Sept. 24th at 6pm
 - Section 1 (the 4:10pm class) exam in BCC N130 (Business College)
 - Section 2 (the 6:00pm class) exam in NR 158 (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Need photo ID
- Send Prof. Tollefson email if you need to take the make-up exam and explain why (tollefson@pa.msu.edu)
 - Make-up exam is at 8am Thursday (meet at 3234 BPS by 7:55am)
- Use the help-room to prepare
- Review in class on Tuesday

Electric Force

 The magnitude of the electrostatic force, F, between 2 charged particles with charges q₁ and q₂, respectively, and separated by a distance r is defined as

$$F = \frac{k |q_1| ||q_2|}{r^2} \qquad k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 N \cdot m^2 / C^2$$

- This is Coulomb's law where *k* is a constant
- The forces on 2 point charges are equal and opposite, pointing to (away from) the other particle for unlike (like) charges

Electric Field

 Electric field, *E*, is the force per unit positive test charge

• For a point charge

$$F = k \frac{|q_0||q|}{r^2} \quad \text{so} \quad E = k \frac{|q|}{r^2}$$

Electric Field

• *E* points towards a negative point charge and away from a positive point charge.

Superposition principle

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n$$

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \ldots + \vec{E}_n$$

• Given the E field we can find the force on charge q $\vec{F} = q\vec{E}$

If the vector addition gives zero you do not need to calculate each one.

For example, in the figure below, if $q_1 = q_2$ then $\vec{E}_1 + \vec{E}_2 = 0$ at the origin and the field comes only from q_3 .

Flux

• Calculate flux of uniform *E* through cylinder

$$\Phi = \oint \vec{E} \bullet d\vec{A}$$

3 surfaces - a, b, and c

$$\Phi = \int_{a} \vec{E} \bullet d\vec{A} + \int_{b} \vec{E} \bullet d\vec{A} + \int_{c} \vec{E} \bullet d\vec{A}$$

Flux

Gauss' Law

Gauss' Law

$$\mathcal{E}_0 \Phi = q_{enc}$$

Also write it as

$$\boldsymbol{\varepsilon}_0 \oint \vec{E} \bullet d\vec{A} = \boldsymbol{q}_{enc}$$

 Net charge q_{enc} is sum of all enclosed charges and may be +, -, or zero

Example for Gauss' Law

- Charge q_1 inside
- *E=0* inside conductor
- Thus \$\varphi = 0\$ for Gaussian surface (red line)
- So net charge enclosed must be 0
- Induced charge of
 q₂ = -q₁ lies on inner
 wall of sphere
- Shell is neutral so charge of $q_3 = -q_2$ on outer wall

Charge distributions

- *E* field from a continuous line or region of charge
- Use calculus and a charge density instead of total charge, Q
- Linear charge density $\lambda = Q / Length$
- Surface charge density $\sigma = Q / Area$
- Volume charge density

$$\rho = Q / Volume$$

Gauss' Law (Fig. 24-15)

• Non-conducting sheet of charge σ

$$\mathcal{E}_0 \oint \vec{E} \bullet d\vec{A} = q_{enc}$$

$$\mathcal{E}_0(EA + EA) = \sigma A$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Electric Potential

• Electric potential energy U for a constant E and work done by the field

$$\Delta U = U_f - U_i = -W$$

$$\begin{array}{c}
\overrightarrow{E} \\
\overrightarrow{F} \\
\overrightarrow{f}
\end{array}$$

$$\Delta U = -Fd = -qEd$$

• Electric potential for a constant *E*

$$\Delta V = \frac{\Delta U}{q} = -Ed$$

Electric Potential (Fig. 25-5)

• Work done by field

$$W = q_0 \int_i^f \vec{E} \bullet d\vec{s}$$

Path Field line
$$q_0$$

 q_0
 $d\vec{s}$ f

Used to find

$$\Delta V = V_f - V_i = -\frac{W}{q_0} = -\int_i^f \vec{E} \bullet d\vec{s}$$

 Potential decreases if path is in the direction of the electric field

• 1) Suppose we generate an electric field of

$$\vec{E} = 200.0 \ (V / m) \ \hat{i}$$

 What is the change in the electric potential, measured in Volts, associated with a moving a charge of 1.4 C from (0,0) m to (2,2) m?

$$\Delta V = -\int_{i}^{f} \vec{E} \bullet d\vec{s}$$

• A) -400, B) -280, C) 600, D) -800, E) 1000

2) Suppose we generate an electric field of

$$\vec{E} = 1.0 \ (V / m) \ \hat{i} + 2.0 \ (V / m) \ \hat{j}$$

What is the work done (in J) by an external agent (W*) to move a charge of 6.0 C from (0,0) m to (2,2) m?

$$W^* = -W = -q_0 \int_i^f \vec{E} \bullet d\vec{s}$$

• A) -6, B) 6, C) -36, D) 70, E) -24

Electric Potential

Summary for a point change

$$F = k \frac{|q||q_0|}{r^2}$$

$$E = k \frac{q}{r^2}$$

$$V = k \frac{q}{r}$$

Electric Potential (Fig. 25-3)

- Dashed lines are the edge of equipotential surfaces where all points are at the same potential.
- Equipotential surfaces are always ⊥ to electric field lines and to *E*.
- In this example V decreases by constant intervals from the positive charge to the negative charge

Electric Potential

 Use superposition principle to find the potential due to n point charges

$$V = \sum_{i=1}^{n} V_{i} = k \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}$$

- This is an algebraic sum, not a vector sum
- Include the sign of the charge

Electric Potential (Mathematica)

Electric Field from Potential

• Take *s* axis to be *x*, *y*, or *z* axes

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$$

• If *E* is uniform and *s* is \perp to equipotential surface

$$E = -\frac{\Delta V}{\Delta s}$$

Potential Energy

 Total potential energy for a collection of charges is the scalar sum of individual potential energies - work required to assemble the charges

$$U = U_{12} + U_{13} + U_{14} + U_{23} + U_{24} + U_{34}$$

where

$$U_{12} = k \frac{q_1 q_2}{d}$$

etc

Capacitance

- Calculate *C* of a capacitor from its geometry using steps:
- 1) Assume charge, q, on the capacitor
- 2) Find *E* between using *q* and Gauss' law

$$\varepsilon_0 \oint \vec{E} \bullet d\vec{A} = q_{enc}$$

• 3) Find *V* from *E* using

$$\Delta V = -\int_{i}^{f} \vec{E} \bullet d\vec{s}$$

• 4) Get C using

$$C = \frac{q}{V}$$

Capacitance (Fig. 26-5)

- Only depends on area A of plates and separation d
- *C* increases if we increase *A* or decrease *d*

Energy in a Capacitor

• Work required from 0 to total charge q is

$$W = \frac{1}{C} \int_0^q q' \, dq' = \frac{q^2}{2C}$$

Potential energy = work

$$U = \frac{q^2}{2C}$$

• Or, use
$$q = CV$$

$$U = \frac{1}{2}CV^2$$

Capacitance

- Capacitors in parallel
 - *V* across each is equal
 - Total q is sum
- Capacitors in series
 - q is equal on each
 - Total V is sum

Capacitance

- Place a dielectric in capacitor its capacitance increases by numerical factor.
- Called dielectric constant, *k*

$$C_{dielectric} = \kappa C_{air}$$