Review for Midterm-1

Midterm-1

- Wednesday Sept. 24th at 6pm
- Section 1 (the 4:10pm class) exam in BCC N130 (Business College)
- Section 2 (the 6:00pm class) exam in NR 158 (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Need photo ID

- Send Prof. Tollefson email if you need to take the make-up exam and explain why (tollefson@pa.msu.edu)
- Make-up exam is at 8am Thursday (meet at 3234 BPS by 7:55am)
- Use the help-room to prepare
- Review in class on Tuesday

Electric Force

- The magnitude of the electrostatic force, F, between 2 charged particles with charges q_{1} and q_{2}, respectively, and separated by a distance r is defined as

$$
F=\frac{k\left|q_{1} \| q_{2}\right|}{r^{2}} \quad k=\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / C^{2}
$$

- This is Coulomb's law where k is a constant
- The forces on 2 point charges are equal and opposite, pointing to (away from) the other particle for unlike (like) charges

Electric Field

- Electric field, E, is the force per unit positive test charge

$$
E=\frac{F}{q_{0}}
$$

- For a point charge

$$
F=k \frac{\left|q_{0}\right||q|}{r^{2}} \quad \text { so } \quad E=k \frac{|q|}{r^{2}}
$$

Electric Field

- E points towards a negative point charge and away from a positive point charge.
- Superposition principle

$$
\begin{aligned}
& \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n} \\
& \vec{E}=\vec{E}_{1}+\vec{E}_{2}+\ldots+\vec{E}_{n}
\end{aligned}
$$

- Given the E field we can find the force on charge q

$$
\vec{F}=q \vec{E}
$$

If the vector addition gives zero you do not need to calculate each one.

For example, in the figure below, if $q_{1}=q_{2}$ then $\vec{E}_{1}+\vec{E}_{2}=0 \quad$ at the origin and the field comes only from q_{3}.

Flux

- Calculate flux of uniform E through cylinder

$$
\Phi=\oint \vec{E} \bullet d \vec{A}
$$

$$
\Phi=\int_{a} \vec{E} \bullet d \vec{A}+\int_{b} \vec{E} \bullet d \vec{A}+\int_{c} \vec{E} \bullet d \vec{A}
$$

Flux

$$
\vec{E} \bullet d \vec{A}=E d A \cos \theta
$$

Gauss' Law

- Gauss' Law

$$
\mathcal{E}_{0} \Phi=q_{e n c}
$$

- Also write it as

$$
\varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=q_{\text {enc }}
$$

- Net charge $q_{\text {enc }}$ is sum of all enclosed charges and may be + , - , or zero

Example for Gauss' Law

- Charge q_{1} inside
- $E=0$ inside conductor
- Thus $\Phi=0$ for Gaussian surface (red line)
- So net charge enclosed must be 0
- Induced charge of $q_{2}=-q_{1}$ lies on inner wall of sphere
- Shell is neutral so charge of $q_{3}=-q_{2}$ on outer wall

Charge distributions

- E field from a continuous line or region of charge
- Use calculus and a charge density instead of total charge, Q
- Linear charge density $\lambda=Q /$ Length
- Surface charge density

$$
\sigma=Q / \text { Area }
$$

- Volume charge density

$$
\rho=Q / \text { Volume }
$$

Gauss' Law (Fig. 24-15)

- Non-conducting sheet of charge σ

$$
\varepsilon_{0} f \hat{E} \cdot d \vec{A}=q_{m e}
$$

$$
\varepsilon_{0}(E A+E A)=\sigma A
$$

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

(b)

Electric Potential

- Electric potential energy U for a constant E and work done by the field

$$
\begin{aligned}
& \Delta U=U_{f}-U_{i}=-W \\
& \Delta U=-F d=-q E d
\end{aligned}
$$

- Electric potential for a constant E

$$
\Delta V=\frac{\Delta U}{q}=-E d
$$

Electric Potential (Fig. 25-5)

- Work done by field

$$
W=q_{0} \int_{i}^{f} \vec{E} \bullet d \vec{s}
$$

- Used to find

$$
\Delta V=V_{f}-V_{i}=-\frac{W}{q_{0}}=-\int_{i}^{f} \vec{E} \bullet d \vec{s}
$$

- Potential decreases if path is in the direction of the electric field

Quiz - FGIIGG

- 1) Suppose we generate an electric field of

$$
\vec{E}=200.0(V / m) \hat{i}
$$

- What is the change in the electric potential, measured in Volts, associated with a moving a charge of 1.4 C from $(0,0) \mathrm{m}$ to $(2,2) \mathrm{m}$?

$$
\Delta V=-\int_{i}^{f} \vec{E} \bullet d \vec{s}
$$

- A) -400 , B) -280, C) 600 , D) -800 , E) 1000

Quiz - FGIIGG

- 2) Suppose we generate an electric field of

$$
\vec{E}=1.0(V / m) \hat{i}+2.0(V / m) \hat{j}
$$

- What is the work done (in J) by an external agent $\left(\mathrm{W}^{*}\right)$ to move a charge of 6.0 C from $(0,0) \mathrm{m}$ to $(2,2) \mathrm{m}$?

$$
W^{*}=-W=-q_{0} \int_{i}^{f} \vec{E} \bullet d \vec{s}
$$

- A) -6, B) 6, C) -36, D) 70, E) -24

Electric Potential

Summary for a point change

$$
\begin{aligned}
& F=k \frac{\left|q \| q_{0}\right|}{r^{2}} \\
& E=k \frac{q}{r^{2}} \\
& V=k \frac{q}{r}
\end{aligned}
$$

Electric Potential (Fig. 25-3)

- Dashed lines are the edge of equipotential surfaces where all points are at the same potential.
- Equipotential surfaces are always \perp to electric field lines and to E.
- In this example V decreases by constant intervals from the positive charge to the negative charge

Electric Potential

- Use superposition principle to find the potential due to n point charges

$$
V=\sum_{i=1}^{n} V_{i}=k \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}
$$

- This is an algebraic sum, not a vector sum
- Include the sign of the charge

Electric Potential (Mathematica)

Electric Field from Potential

- Take s axis to be x, y, or z axes

$$
E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z}
$$

- If E is uniform and s is \perp to equipotential surface

$$
E=-\frac{\Delta V}{\Delta s}
$$

Potential Energy

- Total potential energy for a collection of charges is the scalar sum of individual potential energies - work required to assemble the charges

$$
\begin{aligned}
U & =U_{12}+U_{13}+U_{14} \\
& +U_{23}+U_{24}+U_{34}
\end{aligned}
$$

- where

$$
U_{12}=k \frac{q_{1} q_{2}}{d}
$$

etc

Capacitance

- Calculate C of a capacitor from its geometry using steps:
- 1) Assume charge, q, on the capacitor
- 2) Find E between using q and Gauss' law

$$
\varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=q_{e n c}
$$

- 3) Find V from E using

$$
\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}
$$

$$
C=\frac{q}{V}
$$

Capacitance (Fig. 26-5)

- Parallel-plate capacitor

$$
C=\frac{\varepsilon_{0} A}{d}=\frac{A}{4 \pi k d}
$$

- Only depends on area A of plates and separation d
- C increases if we increase A or decrease d

Energy in a Capacitor

- Work required from 0 to total charge q is

$$
W=\frac{1}{C} \int_{0}^{q} q^{\prime} d q^{\prime}=\frac{q^{2}}{2 C}
$$

- Potential energy = work
- Or, use

$$
q=C V
$$

$$
\begin{aligned}
& U=\frac{q^{2}}{2 C} \\
& U=\frac{1}{2} C V^{2}
\end{aligned}
$$

Capacitance

- Capacitors in parallel
- V across each is equal
- Total q is sum

$$
c_{c y}=\sum_{i}^{n} c_{i}
$$

- Capacitors in series
- q is equal on each
- Total V is sum

$$
\frac{1}{C_{e q}}=\sum_{i}^{n} \frac{1}{C_{i}}
$$

Capacitance

- Place a dielectric in capacitor its capacitance increases by numerical factor.
- Called dielectric constant, κ

$$
C_{\text {dielectric }}=\kappa C_{a i r}
$$

