Review for Midterm-1
Midterm-1

- **Wednesday Sept. 24th at 6pm**
 - Section 1 (the 4:10pm class) exam in – BCC N130 (Business College)
 - Section 2 (the 6:00pm class) exam in – NR 158 (Natural Resources)

- **Allowed one sheet of notes (both sides) and calculator**

- **Need photo ID**

- **Send Prof. Tollefson email if you need to take the make-up exam and explain why (tollefson@pa.msu.edu)**
 - Make-up exam is at 8am Thursday (meet at 3234 BPS by 7:55am)

- **Use the help-room to prepare**

- **Review in class on Tuesday**
Electric Force

- The magnitude of the electrostatic force, F, between 2 charged particles with charges q_1 and q_2, respectively, and separated by a distance r is defined as

$$F = \frac{k|q_1||q_2|}{r^2}$$

- This is Coulomb’s law where k is a constant
- The forces on 2 point charges are equal and opposite, pointing to (away from) the other particle for unlike (like) charges

$$k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2$$
Electric Field

- Electric field, E, is the force per unit positive test charge

\[E = \frac{F}{q_0} \]

- For a point charge

\[F = k \frac{|q_0||q|}{r^2} \]

so

\[E = k \frac{|q|}{r^2} \]
Electric Field

- \(E \) points towards a negative point charge and away from a positive point charge.

- Superposition principle

\[
\vec{F} = \vec{F}_1 + \vec{F}_2 + \ldots + \vec{F}_n
\]

\[
\vec{E} = \vec{E}_1 + \vec{E}_2 + \ldots + \vec{E}_n
\]

- Given the \(E \) field we can find the force on charge \(q \)

\[
\vec{F} = q\vec{E}
\]
If the vector addition gives zero you do not need to calculate each one.

For example, in the figure below, if $q_1=q_2$ then $\vec{E}_1 + \vec{E}_2 = 0$ at the origin and the field comes only from q_3.
Flux

- Calculate flux of uniform E through cylinder

$$\Phi = \int \vec{E} \cdot d\vec{A}$$

- 3 surfaces - a, b, and c

$$\Phi = \int_a \vec{E} \cdot d\vec{A} + \int_b \vec{E} \cdot d\vec{A} + \int_c \vec{E} \cdot d\vec{A}$$
Flux

$\vec{E} \cdot d\vec{A} = E \ dA \cos \theta$
Gauss’ Law

- Gauss’ Law

\[\varepsilon_0 \Phi = q_{enc} \]

- Also write it as

\[\varepsilon_0 \int \vec{E} \cdot d\vec{A} = q_{enc} \]

- Net charge \(q_{enc} \) is sum of all enclosed charges and may be +, -, or zero
Example for Gauss’ Law

- Charge q_1 inside
- $E=0$ inside conductor
- Thus $\Phi=0$ for Gaussian surface (red line)
- So net charge enclosed must be 0
- Induced charge of $q_2 = -q_1$ lies on inner wall of sphere
- Shell is neutral so charge of $q_3 = -q_2$ on outer wall
Charge distributions

- E field from a continuous line or region of charge
- Use calculus and a charge density instead of total charge, Q

- Linear charge density
 \[\lambda = \frac{Q}{\text{Length}} \]

- Surface charge density
 \[\sigma = \frac{Q}{\text{Area}} \]

- Volume charge density
 \[\rho = \frac{Q}{\text{Volume}} \]
Gauss’ Law (Fig. 24-15)

- Non-conducting sheet of charge σ

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = q_{enc}$$

$$\varepsilon_0 (EA + EA) = \sigma A$$

$$E = \frac{\sigma}{2\varepsilon_0}$$
Electric Potential

- Electric potential energy U for a constant E and work done by the field

\[\Delta U = U_f - U_i = -W \]

\[\Delta U = -Fd = -qEd \]

- Electric potential for a constant E

\[\Delta V = \frac{\Delta U}{q} = -Ed \]
Electric Potential (Fig. 25-5)

- Work done by field
 \[W = q_0 \int_{i}^{f} \vec{E} \cdot d\vec{s} \]

- Used to find
 \[\Delta V = V_f - V_i = -\frac{W}{q_0} = -\int_{i}^{f} \vec{E} \cdot d\vec{s} \]

- Potential decreases if path is in the direction of the electric field
1) Suppose we generate an electric field of

\[\vec{E} = 200.0 \ (V/m) \ \hat{i} \]

What is the change in the electric potential, measured in Volts, associated with a moving charge of 1.4 C from (0,0) m to (2,2) m?

\[\Delta V = -\int_{i}^{f} \vec{E} \cdot d\vec{s} \]

A) -400, B) -280, C) 600, D) -800, E) 1000
2) Suppose we generate an electric field of

\[\vec{E} = 1.0 \ (V / m) \ \hat{i} + 2.0 \ (V / m) \ \hat{j} \]

What is the work done (in J) by an external agent \(W^* \) to move a charge of 6.0 C from (0,0) m to (2,2) m?

\[W^* = -W = -q_0 \int_{i}^{f} \vec{E} \cdot d\vec{s} \]

A) -6, B) 6, C) -36, D) 70, E) -24
Electric Potential

Summary for a point change

\[F = k \frac{|q| |q_0|}{r^2} \]

\[E = k \frac{q}{r^2} \]

\[V = k \frac{q}{r} \]
Electric Potential (Fig. 25-3)

- Dashed lines are the edge of equipotential surfaces where all points are at the same potential.

- Equipotential surfaces are always \perp to electric field lines and to E.

- In this example V decreases by constant intervals from the positive charge to the negative charge.
Electric Potential

- Use superposition principle to find the potential due to n point charges

\[V = \sum_{i=1}^{n} V_i = k \sum_{i=1}^{n} \frac{q_i}{r_i} \]

- This is an algebraic sum, not a vector sum
- Include the sign of the charge
Electric Potential (Mathematica)
Electric Field from Potential

- Take s axis to be x, y, or z axes

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$$

- If E is uniform and s is \perp to equipotential surface

$$E = -\frac{\Delta V}{\Delta s}$$
Total potential energy for a collection of charges is the scalar sum of individual potential energies - work required to assemble the charges

\[U = U_{12} + U_{13} + U_{14} \]
\[+ U_{23} + U_{24} + U_{34} \]

where

\[U_{12} = k \frac{q_1 q_2}{d} \]

etc
Capacitance

- Calculate C of a capacitor from its geometry using steps:
- 1) Assume charge, q, on the capacitor
- 2) Find E between using q and Gauss’ law

$$\varepsilon_0 \int \vec{E} \cdot d\vec{A} = q_{enc}$$

- 3) Find V from E using

$$\Delta V = -\int_{i}^{f} \vec{E} \cdot d\vec{s}$$

- 4) Get C using

$$C = \frac{q}{V}$$
Capacitance (Fig. 26-5)

- Parallel-plate capacitor

\[C = \frac{\varepsilon_0 A}{d} = \frac{A}{4\pi k d} \]

- Only depends on area \(A \) of plates and separation \(d \)

- \(C \) increases if we increase \(A \) or decrease \(d \)
Energy in a Capacitor

- Work required from 0 to total charge q is
 \[W = \frac{1}{C} \int_{0}^{q} q' \, dq' = \frac{q^2}{2C} \]

- Potential energy = work
 \[U = \frac{q^2}{2C} \]

- Or, use
 \[q = CV \]
 \[U = \frac{1}{2} CV^2 \]
Capacitance

- Capacitors in parallel
 - V across each is equal
 - Total q is sum

- Capacitors in series
 - q is equal on each
 - Total V is sum

$$C_{eq} = \sum_{i}^{n} C_i$$

$$\frac{1}{C_{eq}} = \sum_{i}^{n} \frac{1}{C_i}$$
Capacitance

- Place a dielectric in capacitor its capacitance increases by numerical factor.
- Called dielectric constant, κ

\[
C_{\text{dielectric}} = \kappa C_{\text{air}}
\]