Review for 2nd Midterm

Midterm-2

• Wednesday October 29 at 6pm

- Section 1 N100 BCC (Business College)
- Section 2 158 NR (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Covers Chapters 27-31 and homework sets #5-8
- Send an email to your professor if you have a class conflict and need a make-up exam
- Review in class on Tuesday, October 28th

Current and Resistance

• Current
$$i = \frac{dq}{dt}$$

• Current density
$$i = \int \vec{J} \cdot d\vec{A}$$

• If *J* is uniform and parallel to *dA*

Current and Resistance

Ohm's law

$$V = iR$$

Power lost to heat energy in a resistor

$$P = iV$$

$$P = i^2 R$$

$$P = \frac{V^2}{R}$$

• Substituting for *i* gives

$$V_b - V_a = \mathsf{E} \, \frac{R}{R+r}$$

Circuits

- Resistors in series
- Resistors have identical currents, *i*
- Sum of V's across
 resistors = applied V = E.
- R_{eq} is sum of all resistors

Circuits

- Resistors in parallel
- Resistors have identical
 V = E

•
$$i_1 = V/R_1$$
 etc

• R_{eq} given by

Junction Rule

- Arbitrarily label currents, using different subscript for each branch
- Using conservation of charge at each junction

$$i_{in} = i_{out}$$

At point d

$$i_1 + i_3 = i_2$$

 $i_1 + i_3 = i_2$

At point b

• At point a

$$i_1 = i_1$$

At point c

$$i_2 = i_2$$

Circuits

- What is *i*₁? *R*₁=*R*₂=*R*₃=*R*₄=2 ohm
- E=5 V

Circuits

• What is i_2 ?

• Three unknowns so we need three equations

$$\mathsf{E} - i_1 R_1 - i_2 R_2 - i_1 R_4 = 0$$

$$-i_3 R_3 + i_2 R_2 = 0$$

$$i_1 = i_2 + i_3$$

$$i_2 = -\frac{i_1 R_3}{(R_3 + R_2)}$$

Motion in a B Field

 Force on a charged particle due to a magnetic field is

$$\vec{F}_{B} = q\vec{v} \times \vec{B}$$

- *F_B* does not change the speed (magnitude of *v*) or kinetic energy of particle
- Charged particles moving with *v* ⊥ to a *B* field move in a circular path with radius, *r*
- Force on a current carrying wire due to a magnetic field is

$$r = \frac{mv}{qB}$$

$$\vec{F}_B = i\vec{L}\times\vec{B}$$

Motion in a B Field

- Right-hand rule For positive charges - when the fingers sweep v into B through the smaller angle \u03c6 the thumb will be pointing in the direction of F_B
- For negative charges F_B points in opposite direction

Motion in a B Field

• Frequency (the number of revolutions per unit time)

$$f = \frac{1}{T}$$

Angular frequency:

$$\omega = 2\pi f$$

• *B* field a distance *R* from a long straight wire carrying current *i*

$$B = \frac{\mu_0 i}{2\pi R}$$

• *B* field is tangent to magnetic field lines

- right-hand rule
- Point thumb in direction of current flow
- Fingers will curl in the direction of the magnetic field lines due to current

• *B* field at the center of an arc is

$$B = \frac{\mu_0 i\phi}{4\pi R}$$

• Express ϕ in radians

• For a complete loop $(\phi = 2\pi)$ then *B* is

$$B = \frac{\mu_0 i}{2R}$$

Force on a wire carrying current, *i₁*, due to *B* of another parallel wire with current *i₂*

$$F = \frac{\mu_0 L i_1 i_2}{2\pi d}$$

- Force is attractive if current in both wires are in the same directions
- Force is repulsive if current in both wires are in the opposite directions

 For symmetric distributions of charge use Ampere's law to calculate *B* field

$$\oint \vec{B} \bullet d\vec{s} = \mu_0 i_{enc}$$

 Integral around closed loop called Amperian loop

- Use the right-hand rule to determine the signs for the currents encircled by the Amperian loop
- Curl right hand around Amperian loop with fingers pointing in direction of integration
- Current going through loop in the same direction as thumb is positive.
- Current going in the opposite direction is negative.

 $B = \mu_0 in$

n is # turns/lengthFor toroid

$$B = \frac{\mu_0 iN}{2\pi r}$$

Currents from B Fields

Magnetic flux

$$\Phi_{B} = \int \vec{B} \bullet d\vec{A}$$

Faraday's law (N loops)

$$\mathsf{E} = -N \frac{d\Phi_{B}}{dt}$$

 Lenz's law – induced emf gives rise to a current whose *B* field opposes the change in flux that produced it

Faraday's law

$$\Phi_B = \int \vec{B} \bullet d\vec{A} = BA\cos\theta$$

- We can change the magnetic flux through a loop (or coil) by:
 - Changing magnitude of *B* field within coil
 - Changing area of coil, or portion of area within *B* field
 - Changing angle between B field and area of coil (e.g. rotating coil)

$$\mathsf{E} = -N \frac{d\Phi_{\scriptscriptstyle B}}{dt}$$

$$\mathsf{E} = -NA\cos\theta \frac{dB}{dt}$$

$$\mathsf{E} = -NB\cos\theta \frac{dA}{dt}$$

$$\mathsf{E} = -NBA \frac{d(\cos\theta)}{dt}$$

Generators

- Generator with N turns of \vec{B} area A and rotating with constant angular velocity, ω
- Magnetic flux is

$$\Phi_B = BA\cos\omega t$$

Emf is

$$E = NBA\omega \sin \omega t$$

