Review for $2^{\text {nd }}$ Midterm

Midterm-2

- Wednesday October 29 at 6pm
- Section 1 - N100 BCC (Business College)
- Section 2-158 NR (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Covers Chapters 27-31 and homework sets \#5-8
- Send an email to your professor if you have a class conflict and need a make-up exam
- Review in class on Tuesday, October 28th

Current and Resistance

- Current

$$
i=\frac{d q}{d t}
$$

- Current density $\quad i=\int \vec{J} \bullet d \vec{A}$
- If J is uniform and parallel to $d A$

$$
i=J A
$$

Current and Resistance

- Ohm's law $V=i R$
- Power lost to heat energy in a resistor

$$
P=i V
$$

$$
P=i^{2} R \quad P=\frac{V^{2}}{R}
$$

Loop Rule

$$
\mathrm{E}-i r-i R=0
$$

$$
i=\frac{\mathrm{E}}{r+R}
$$

(b)

Circuits

$$
V_{b}-V_{a}=i R
$$

- Substituting for i gives

$$
V_{b}-V_{a}=\mathrm{E} \frac{R}{R+r}
$$

Circuits

- Resistors in series
- Resistors have identical currents, i
- Sum of $V \mathrm{~s}$ across resistors $=$ applied $V=\mathrm{E}$.

(a)

Circuits

- Resistors in parallel
- Resistors have identical $V=\mathrm{E}$
- $i_{1}=V / R_{1}$ etc
- $R_{e q}$ given by

$$
\frac{1}{R_{e q}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

(a)

Junction Rule

- Arbitrarily label currents, using different subscript for each branch
- Using conservation of charge at each junction

$$
i_{i n}=i_{o u t}
$$

- At point d

$$
i_{1}+i_{3}=i_{2}
$$

- At point a $i_{1}=i_{1}$
- At point b

$$
i_{1}+i_{3}=i_{2}
$$

- At point c $i_{2}=i_{2}$

Circuits

- What is i_{1} ?
- $R_{1}=R_{2}=R_{3}=R_{4}=2 \mathrm{ohm}$
- $\mathrm{E}=5 \mathrm{~V}$

Circuits

- What is i_{2} ?
- Three unknowns so we need three equations

$$
\begin{gathered}
\mathrm{E}-i_{1} R_{1}-i_{2} R_{2}-i_{1} R_{4}=0 \\
-i_{3} R_{3}+i_{2} R_{2}=0 \\
i_{1}=i_{2}+i_{3}
\end{gathered}
$$

$$
i_{2}=-\frac{i_{1} R_{3}}{\left(R_{3}+R_{2}\right)}
$$

Motion in a B Field

- Force on a charged particle due to a magnetic field is
- F_{B} does not change the speed (magnitude of v) or kinetic energy of particle
- Charged particles moving with $v \perp$ to a B field move in a circular path with radius, r
- Force on a current carrying wire due to a magnetic field is

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

$$
r=\frac{m v}{q B}
$$

$$
\vec{F}_{B}=i \vec{L} \times \vec{B}
$$

Motion in a B Field

- Right-hand rule - For positive charges - when the fingers sweep v into B through the smaller angle ϕ the thumb will be pointing in the direction of F_{B}

- For negative charges F_{B} points in opposite direction

Motion in a B Field

- Circular motion

$$
r=\frac{m v}{q B}
$$

- Period (time for one revolution)

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi m}{q B}
$$

- Frequency (the number of revolutions per unit time)

$$
f=\frac{1}{T}
$$

- Angular frequency: $\omega=2 \pi f$

B Fields from Currents

- Biot-Savart law

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

B Fields from Currents

- B field a distance R from a long straight wire carrying current i

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

- B field is tangent to magnetic field lines

B Fields from Currents

- right-hand rule
- Point thumb in direction of current flow

- Fingers will curl in the direction of the magnetic field lines due to current

B Fields from Currents

- B field at the center of an arc is

$$
B=\frac{\mu_{0} i \phi}{4 \pi R}
$$

- Express ϕ in radians
- For a complete loop ($\phi=2 \pi$) then B is

$$
B=\frac{\mu_{0} i}{2 R}
$$

B Fields from Currents

- Force on a wire carrying current, i_{1}, due to B of another parallel wire with current i_{2}

$$
F=\frac{\mu_{0} L i_{1} i_{2}}{2 \pi d}
$$

- Force is attractive if current in both wires are in the same directions
- Force is repulsive if current in both wires are in the opposite directions

B Fields from Currents

- For symmetric distributions of charge use Ampere's law to calculate B field

$$
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{e n c}
$$

- Integral around closed loop called Amperian loop

B Fields from Currents

- Use the right-hand rule to determine the signs for the currents encircled by the Amperian loop
- Curl right hand around Amperian loop with fingers pointing in direction of integration
- Current going through loop in

- Current going in the opposite direction is negative.

B Fields from Currents

- For ideal solenoid:

$$
B=\mu_{0} i n
$$

- n is \# turns/length
- For toroid

$$
B=\frac{\mu_{0} i N}{2 \pi r}
$$

(b)

Currents from B Fields

- Magnetic flux $\Phi_{B}=\int \vec{B} \bullet d \vec{A}$
- Faraday's law (N loops)

$$
\mathrm{E}=-N \frac{d \Phi_{B}}{d t}
$$

- Lenz's law - induced emf gives rise to a current whose B field opposes the change in flux that produced it

Faraday's law

$$
\Phi_{B}=\int \vec{B} \bullet d \vec{A}=B A \cos \theta
$$

- We can change the magnetic flux through a loop (or coil) by:

$$
\mathrm{E}=-N \frac{d \Phi_{B}}{d t}
$$

- Changing magnitude of B field within coil

$$
\mathrm{E}=-N A \cos \theta \frac{d B}{d t}
$$

- Changing area of coil, or portion of area within B field

$$
\mathrm{E}=-N B \cos \theta \frac{d A}{d t}
$$

- Changing angle between B field and area of coil (e.g. rotating coil)

$$
\mathrm{E}=-N B A \frac{d(\cos \theta)}{d t}
$$

Generators

- Generator with N turns of area A and rotating with constant angular velocity, ω
- Magnetic flux is

$$
\Phi_{B}=B A \cos \omega t
$$

- Emf is

$$
\mathrm{E}=N B A \omega \sin \omega t
$$

