November 24th

Review for midterm 3
Schedule for rest of term

- Nov. 25 (Tues) - no class - **Midterm-3 at 6pm**
- Nov. 26 (Wed) – 8am midterm-3 make-ups
- Nov. 26 (Wed) – class – finish Chpt. 36
- Dec. 1-2 (Mon-Tues) – cover Chpt. 37
- Dec. 3-5 (Wed-Fri) – Review for final
- Dec. 3 (Wed) – HW set #12 due
- Dec. 8 (Mon) – Corrections #3 due
- Dec. 8 (Mon) – 5:45-7:45 pm Final Exam
 - N130 BCC (Business College) for section 1
 - 158 NR (Natural Resources) for section 2
Midterm-3

- **Tuesday November 25 at 6pm**
 - Section 1 – N100 BCC (Business College)
 - Section 2 – 158 NR (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Covers Chapters 32-35 (HW sets 9,10, and 11)
- Need photo ID
- Send me an email if you have another class on Tuesday night - *tell me which class it is* - makeup will be on Wednesday morning.
- Use the help-room to prepare
Elements of RLC circuits

<table>
<thead>
<tr>
<th>Element</th>
<th>Resistor</th>
<th>Inductor</th>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy stored</td>
<td>(U = 0)</td>
<td>(U_B = \frac{1}{2} Li^2)</td>
<td>(U_E = \frac{1}{2} \frac{q^2}{C})</td>
</tr>
<tr>
<td>Voltage change</td>
<td>(V = iR)</td>
<td>(V = -L \frac{di}{dt})</td>
<td>(V = \frac{q}{C})</td>
</tr>
<tr>
<td>Power lost</td>
<td>(P = i^2 R)</td>
<td>(P = 0)</td>
<td>(P = 0)</td>
</tr>
</tbody>
</table>
LC Circuits

- **Charge**
 \[q = Q \cos(\omega t) \]

- **Current**
 \[i = \frac{dq}{dt} = -Q \omega \sin(\omega t) \]

- **Angular frequency**
 \[\omega = \sqrt{\frac{1}{LC}} \]

- **No power loss**
RLC circuits

- Charge on capacitor
 \[q = Qe^{-\frac{Rt}{2L}} \cos(\omega' t) \]

- Angular frequency
 \[\omega' = \sqrt{\omega^2 - \left(\frac{R}{2L}\right)^2} \]

- Natural frequency
 \[\omega = \sqrt{\frac{1}{LC}} \]
AC circuits

Resistive load

\[I_R = \frac{V_R}{R} \]

Capacitive load

\[I_C = \frac{V_C}{X_C} \]

\[X_C = \frac{1}{\omega_d C} \]

Inductive load

\[I_L = \frac{V_L}{X_L} \]

\[X_L = \omega_d L \]

\(\omega_d \) is the driving frequency

\[E = E_m \sin \omega_d t \]
AC circuits

- Current (same everywhere)
 - \(i = I \sin(\omega_d t - \phi) \)

- Solution
 - \(I = \frac{E_m}{Z} \)
 - \(\tan \phi = \frac{X_L - X_C}{R} \)
 - \(\frac{X_L}{X_C} = \frac{(\omega_d)^2}{\omega^2} \)

- \(Z \) is the impedance
 - \(Z = \sqrt{R^2 + (X_L - X_C)^2} \)

- \(I \) is maximum on resonance where
 - \(X_L = X_C \)
 - \(Z = R \)
 - \(\omega_d = \omega \)
Transformer

\[I_S = I_P \frac{N_P}{N_S} \]

\[V_S = V_P \frac{N_S}{N_P} \]
EM Waves

\[E = E_m \sin(kx - \omega t) \]

\[B = B_m \sin(kx - \omega t) \]

\[c = \frac{E}{B} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \text{ m/s} \]

Direction and power per unit area

Intensity
\[I = \frac{1}{\mu_0 c} E_{rms}^2 \]

Pressure
\[p_r = \frac{I}{c} \]

absorption reflection
Polarization

- Polarization is the direction of the E field

- Intensity of unpolarized light with intensity I_0 after hitting a polarizing sheet

\[I = \frac{1}{2} I_0 \]

- Intensity of polarized light with intensity I_0 after hitting a polarizing sheet

\[I = I_0 \cos^2 \theta \]
Reflection & Refraction (Fig. 34-17)

- **Reflection**: \(\theta'_1 = \theta_1 \)

- **Refraction (Snell’s law)**
 \[n_2 \sin \theta_2 = n_1 \sin \theta_1 \]

- **Index of refraction**
 \[n = \frac{\text{speed in vacuum}}{\text{speed in medium}} = \frac{c}{v} \]
 \[\frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1} \]

- **Critical angle (no refracted wave)**
 \[\theta_c = \sin^{-1} \frac{n_2}{n_1} \]

Frequency does not change with \(n \)

\(f = \frac{\lambda}{v} \)
Mirrors

- **Plane** – flat mirror
- **Concave** – caved in towards object
- **Convex** – flexed out away from object

\[\frac{1}{p} + \frac{1}{i} = \frac{1}{f} \]

- \(r \) = radius of curvature
- \(f \) = focal length, \(f > 0 \) concave, \(f < 0 \) convex
- \(p \) = position of object
- \(i \) = position of image

- **real images** on side where object is
- **virtual images** on opposite side

lateral magnification:

\[|m| = \frac{h'}{h} \]

\[m = -\frac{i}{p} \]
Thin lenses

- Real images: opposite side - virtual images: same side
- Diverging lens \((f<0)\): smaller, same orientation, virtual images
- Converging lens \((f>0)\): both real and virtual images
- Image position and magnification:
 \[
 \frac{1}{p} + \frac{1}{i} = \frac{1}{f}
 \]
 \[
 m = -\frac{i}{p}
 \]
- Lens maker’s equation:
 \[
 \frac{1}{f} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)
 \]
Mirrors

<table>
<thead>
<tr>
<th>Mirror Type</th>
<th>Object Location</th>
<th>Image Location</th>
<th>Image Size</th>
<th>Image Type</th>
<th>Image Orientation</th>
<th>Sign of f</th>
<th>Sign of i</th>
<th>Sign of m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>Anywhere</td>
<td>$i = -p$</td>
<td>Equal</td>
<td>Virtual</td>
<td>Same</td>
<td>∞</td>
<td>-</td>
<td>$+1$</td>
</tr>
<tr>
<td>Concave</td>
<td>$p < f$</td>
<td>Anywhere</td>
<td>Bigger</td>
<td>Virtual</td>
<td>Same</td>
<td>$+$</td>
<td>-</td>
<td>$+$</td>
</tr>
<tr>
<td>Concave</td>
<td>$f < p < 2f$</td>
<td>$i > 2f$</td>
<td>Bigger</td>
<td>Real</td>
<td>Invert</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>Concave</td>
<td>$p = 2f$</td>
<td>$i = 2f$</td>
<td>Equal</td>
<td>Real</td>
<td>Invert</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>Concave</td>
<td>$p > 2f$</td>
<td>$2f > i > f$</td>
<td>Smaller</td>
<td>Real</td>
<td>Invert</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>Convex</td>
<td>Anywhere</td>
<td>$</td>
<td>i</td>
<td><</td>
<td>f</td>
<td>$</td>
<td>Smaller</td>
<td>Virtual</td>
</tr>
</tbody>
</table>
Thin lenses

Converging lens = concave mirror

Diverging lens = convex mirror

<table>
<thead>
<tr>
<th>Thin Lens Type</th>
<th>Object Location</th>
<th>Image Location</th>
<th>Image Size</th>
<th>Image Type</th>
<th>Image Orientation</th>
<th>Sign of f</th>
<th>Sign of i</th>
<th>Sign of m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converging</td>
<td>p < f</td>
<td>Anywhere</td>
<td>Bigger</td>
<td>Virtual</td>
<td>Same</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Converging</td>
<td>f < p < 2f</td>
<td>i > 2f</td>
<td>Bigger</td>
<td>Real</td>
<td>Invert</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Converging</td>
<td>p = 2f</td>
<td>i = 2f</td>
<td>Equal</td>
<td>Real</td>
<td>Invert</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Converging</td>
<td>p > 2f</td>
<td>2f > i > f</td>
<td>Smaller</td>
<td>Real</td>
<td>Invert</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Diverging</td>
<td>Anywhere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>