Review for final

Schedule

- Dec. 3-5 (Wed-Fri) - Review for final
- Dec. 3 (Wed) - HW set \#12 due at 11pm
- Dec. 8 (Mon) - Corrections \#3 due at 7am
- Dec. 8 (Mon) - Final Exam 5:45-7:45pm - Section 1 - N130 BCC (Business College)
- Section 2 - 158 NR (Natural Resources)

Final Exam

- If >2 finals on Mon. may take make-up final exam on Tues. from 8-10am
- Email Prof. Tollefson with list of other finals
- Allowed 3 sheets of notes (both sides) and calculator
- Covers Chapters 22-37, HW sets 1-12
- Exam will have 20 questions
- Need photo ID

Electric Fields

- Point change q

$$
F=k \frac{\left|q \| q_{0}\right|}{r^{2}} \quad E=k \frac{q}{r^{2}} \quad V=k \frac{q}{r}
$$

- E points away from positive charges and towards negative charges
- Superposition principle (many charges)
$\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n}$

$$
V=\sum_{i=1}^{n} V_{i}
$$

Electric Potential

- Electric potential from field

$$
\Delta V=-\int_{i}^{f} \vec{E} \bullet d \vec{s}
$$

- Constant field over distance d
$\Delta V=-E d$
- Work done moving charge $q_{0} \quad W=q_{0} \Delta V$

Electric Potential

- Blue lines are the electric field
- Dashed lines are equipotential surfaces where all points are at the same potential
- V decreases by constant intervals from the positive charge to the negative charge

(c)

Guass' Law

- Electric flux

$$
\begin{aligned}
& \Phi=\oint \vec{E} \bullet d \vec{A} \\
& \vec{E} \bullet d \vec{A}=E d A \cos \theta
\end{aligned}
$$

- Gauss' Law

$$
\varepsilon_{0} \Phi=\varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=q_{e n c}
$$

- Net charge $q_{\text {enc }}$ is sum of all enclosed charges and may be,+- , or zero

Conductors (example)

- Charge q_{1} inside
- $E=0$ inside conductor
- Thus $\Phi=0$ for Gaussian surface (red line)
- So net charge enclosed must be 0
- Induced charge of $q_{2}=-q_{1}$ lies on inner wall of conductor
- Shell is neutral so charge of $q_{3}=-q_{2}$ on outer wall

Electric Potential Energy

- Work required to assemble the charges

$$
\begin{aligned}
U & =U_{12}+U_{13}+U_{14} \\
& +U_{23}+U_{24}+U_{34}
\end{aligned}
$$

- where etc

$$
U_{12}=k \frac{q_{1} q_{2}}{d}
$$

Motion in a B Field

- Force on a charged particle due to a magnetic field is
- F_{B} does not change the speed (magnitude of v) or kinetic energy of particle
- Charged particles moving with $v \perp$ to a B field move in a circular path with radius, r
- Force on a current carrying wire due to a magnetic field is

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

$$
r=\frac{m v}{q B}
$$

$$
\vec{F}_{B}=i \vec{L} \times \vec{B}
$$

Motion in a B Field

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

- Right-hand rule - For positive charges - when the fingers sweep v into B through the smaller angle ϕ the thumb will be pointing in the direction of F_{B}
- For negative charges F_{B} points in opposite direction

Motion in a B Field

- Circular motion

$$
r=\frac{m v}{q B}
$$

- Period (time for one revolution)

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi m}{q B}
$$

- Frequency (the number of revolutions per unit time)

$$
f=\frac{1}{T}
$$

- Angular frequency: $\omega=2 \pi f$

B Fields from Currents

- B field a distance R from a long straight wire carrying current i

$$
B=\frac{\mu_{0} i}{2 \pi R}
$$

- B field is tangent to magnetic field lines

B Fields from Currents

- right-hand rule
- Point thumb in direction of current flow

- Fingers will curl in the direction of the magnetic field lines due to current

B Fields from Currents

- Force on a wire carrying current, i_{1}, due to B of another parallel wire with current i_{2}

$$
F=\frac{\mu_{0} L i_{1} i_{2}}{2 \pi d}
$$

- Force is attractive if current in both wires are in the same directions
- Force is repulsive if current in both wires are in the opposite directions

B Fields from Currents

- For ideal solenoid:

$$
B=\mu_{0} i n
$$

n is the number of turns/length

Faraday's Law

- Magnetic flux

$$
\Phi_{B}=\int \vec{B} \bullet d \vec{A}=B A \cos \theta
$$

- Faraday's law (N loops)

$$
\mathrm{E}=-N \frac{d \Phi_{B}}{d t}
$$

- Lenz's law - induced emf gives rise to a current whose B field opposes the change in flux that produced it

Faraday's law

- We can change the magnetic flux through a loop (or coil) by:
- Changing magnitude of B field within coil

$$
\mathrm{E}=-N A \cos \theta \frac{d B}{d t}
$$

- Changing area of coil, or portion of area within B field

$$
E=-N B \cos \theta \frac{d A}{d t}
$$

$$
\mathrm{E}=-N B A \frac{d(\cos \theta)}{d t}
$$

Generators

- Generator with N turns of area A and rotating with constant angular velocity, ω
- Magnetic flux is

$$
\Phi_{B}=B A \cos \omega t
$$

- Emf is

$$
\mathrm{E}=N B A \omega \sin \omega t
$$

Circuits

- Current $i=\frac{d q}{d t}$
- Resistors
- Ohm's law $V=i R$
- Power lost $P=i V=i^{2} R=\frac{V^{2}}{R}$

Circuits

- Definition of capacitance: $C=\frac{q}{V}$
- Parallel plates of area A and separation d

$$
C=\frac{\varepsilon_{0} A}{d}
$$

Circuits

- Junction rule:

$$
i_{i n}=i_{o u t}
$$

- Loop rule: sum of potential changes around each loop is zero

Circuits
 Parallel
 Series

- Capacitors

$$
C_{e q}=\sum_{i}^{n} c_{i}
$$

- V same on each
- Total q is sum

$$
\frac{1}{R_{e q}}=\sum_{i}^{n} \frac{1}{R_{i}}
$$

- V same on each

$$
\frac{1}{C_{e q}}=\sum_{i}^{n} \frac{1}{C_{i}}
$$

- q same on each
- Total V is sum

$$
R_{e q}=\sum_{i}^{n} R_{i}
$$

- i same in each
- Total V is sum

Elements of RLC circuits

Resistor
 Inductor
 Capacitor

- Energy

$$
U=0
$$

$U_{B}=\frac{1}{2} L i^{2}$
$U_{E}=\frac{1}{2} \frac{q^{2}}{C}$ stored

$$
V=-L \frac{d i}{d t}
$$

$$
V=(-) \frac{q}{C}
$$

$(-)$ means sign relative to the direction of current flow

- Power lost $\quad P=i^{2} R$

$$
P=0
$$

$$
P=0
$$

LC Circuits

- Charge

$$
q=Q \cos (\omega t)
$$

- Current $\quad i=\frac{d q}{d t}=-Q \omega \sin (\omega t)$

- Angular frequency

$$
\omega=\sqrt{\frac{1}{L C}}
$$

- No power loss

RLC Circuits

- Charge on capacitor

$$
q=Q e^{-R t / 2 L} \cos \left(\omega^{\prime} t\right)
$$

- Angular frequency

$$
\omega^{\prime}=\sqrt{\omega^{2}-(R / 2 L)^{2}}
$$

- Natural frequency

$$
\omega=\sqrt{\frac{1}{L C}}
$$

AC Circuits

$$
\mathrm{E}=\mathrm{E}_{m} \sin \omega_{d} t, \quad \omega_{d}=\text { driving frequency }
$$

Resistive load

$$
I_{R}=\frac{V_{R}}{R}
$$

Capacitive load

$$
I_{C}=\frac{V_{C}}{X_{C}}
$$

$$
X_{C}=\frac{1}{\omega_{d} C}
$$

Inductive load

$$
I_{L}=\frac{V_{L}}{X_{L}}
$$

$$
X_{L}=\omega_{d} L
$$

X is the reactance

AC Circuits

- Input $\mathrm{E}=\mathrm{E}_{m} \sin \omega_{d} t, \quad \omega_{d}=$ driving frequency

- Current (same everywhere) $i=I \sin \left(\omega_{d} t-\phi\right)$
- Solution $I=\frac{\mathrm{E}_{m}}{Z} \quad \tan \phi=\frac{X_{L}-X_{C}}{R} \quad \frac{X_{L}}{X_{C}}=\frac{\left(\omega_{d}\right)^{2}}{\omega^{2}}$
- Z is the impedance $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
- I is maximum on resonance where

$$
X_{L}=X_{C} \quad Z=R \quad \omega_{d}=\omega
$$

EM Waves

$$
\begin{gathered}
E=E_{m} \sin (k x-\omega t) \\
B=B_{m} \sin (k x-\omega t) \\
v=c=f \lambda=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Direction and power per unit area

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

Intensity $I=\frac{1}{2 \mu_{0} c} E_{m}^{2}$

$$
\text { Pressure } \quad p_{r}=\frac{I}{c} \quad p_{r}=\frac{2 I}{c}
$$

absorption reflection

Polarization

- Polarization is the direction of the E field

$$
I=\frac{1}{2} I_{0}
$$ sheet

- Intensity of polarized light with intensity I_{0} after hitting a polarizing

$$
I=I_{0} \cos ^{2} \theta
$$ sheet

Reflection \& Refraction

- Reflection: $\theta_{1}^{\prime}=\theta_{1}$
- Refraction (Snell's law)

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

- Index of refraction

$$
n=\frac{\text { speed in vacuum }}{\text { speed in medium }}=\frac{c}{v} \quad \omega_{1}=\omega_{2} \quad \frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{n_{2}}{n_{1}}
$$

- Critical angle (no refracted wave)

$$
\theta_{C}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

Mirrors

- Plane - flat mirror
- Concave - caved in towards object
- Convex - flexed out away from object

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f} \quad f=\frac{1}{2} r
$$

- $r=$ radius of curvature
- $f=$ focal length, $f>0$ concave, $f<0$ convex
- $p=$ position of object
- $\mathrm{i}=$ position of image
- real images on side where object is
- virtual images on opposite side
- lateral magnification:

$$
|m|=\frac{h^{\prime}}{h} \quad m=-\frac{i}{p}
$$

Thin Lenses

- Real images: opposite side - virtual images: same side
- Diverging lens ($\mathrm{f}<0$): smaller, same orientation, virtual images
- Converging lens (f>0): both real and virtual images
- Image position and magnification:
- Lens maker's equation:

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

$$
m=-\frac{i}{p}
$$

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

Interference and Diffraction

- Diffraction minima given by ($\mathrm{a}=$ slit width)

$$
a \sin \theta^{\prime}=m^{\prime} \lambda
$$

$$
y^{\prime}=\frac{m^{\prime} \lambda D}{a}, m^{\prime}=1,2 \ldots
$$

- Two-slit maxima given by (d=slit separation) $d \sin \theta=m \lambda$

$$
y=\frac{m \lambda D}{d}, m=0,1,2 \ldots
$$

- Small angles $\sin \theta=\theta$ (θ in radians)

Thin Films

- Phase change at interface
- Refraction at interface (the transmitted wave) never changes phase
- Reflection gives a phase change

$$
\frac{1}{2} \lambda \text { if } n_{1}<n_{2}
$$

- Phase change due to path a-b-c in material n_{2} over a total length 2 L
- 1 and 2 are in phase if

$$
2 L=m \lambda_{n 2}, m=0,1,2 \ldots
$$

- 1 and 2 are out of phase if

$$
2 L=\left(m+\frac{1}{2}\right) \lambda_{n 2}, m=0,1,2 \ldots \quad \lambda_{n 2}=\frac{\lambda}{n_{2}}
$$

