September 11/12th

Chapter 25
Electric Potential

Review

- Electric Potential Energy, U
- W is the work done by the electic field

$$
\Delta U=-W
$$

- Electric Potential, V

$$
\Delta V=\frac{\Delta U}{q}=-\frac{W}{q}
$$

Review - Potential

$$
\Delta V=-\int_{i}^{f} \vec{E} \bullet d \vec{s}
$$

- Potential of point charge
- Sign of V is same sign as q

$$
V=k \frac{q}{r}
$$

- + charge produces $+V$
- - charge produces $-V$

Electric Potential

- Use superposition principle to find the potential due to n point charges

$$
V=\sum_{i=1}^{n} V_{i}=k \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}
$$

- This is an algebraic sum, not a vector sum
- Include the sign of the charge

Potential Due to Group of Point Charges

- What is V at point P if distance d is 1 m and the charges are:
- Q1=+10 C
- $\mathrm{Q} 2=-20 \mathrm{C}$
- Q3=+5 C
- Q4 $=+10 \mathrm{C}$

Work

- Work done by electric field, W

$$
\Delta U=-W=-\Delta V q
$$

- Work done by you, $W_{a p p}$

$$
W_{a p p}=-W=\Delta V q
$$

Potential Energy

- Total electric potential energy, U, of a system of charges is obtained from the work done by an external $F,\left(W_{a p p}\right)$ to assemble the system, bringing each charge in from ∞. In terms of work done by the field, $W_{a p p}=-W$.

- Bring q_{1} from $\infty, W_{\text {app }}=0$ since no electric F yet

Potential Energy (Fig. 25-16)

- Potential due to q_{1} is

$$
V=k \frac{q_{1}}{r} \quad \stackrel{q_{1}}{\oplus} r \longrightarrow \oplus
$$

- Bring q_{2} in from infinity. From definition of potential energy

$$
U=W_{a p p}=q_{2} V=k \frac{q_{1} q_{2}}{r} \quad \text { or } \quad U=k \frac{q_{1} q_{2}}{r}
$$

- Charges of like sign, $W_{a p p}$ and U are +
- Charges of opposite sign, $W_{a p p}$ and U are -

Potential Energy

- What is the potential energy when add an additional charge to system?
- Move q_{1} from $\infty, W_{\text {app }}=U=0$
- Move q_{2} from ∞

$$
W_{12}=U_{12}=k \frac{q_{1} q_{2}}{d}
$$

Potential Energy (Fig. 25-17)

- Now bring in q_{3}

$$
W_{13}=U_{13}=k \frac{q_{1} q_{3}}{d}
$$

- Must also remember q_{2}

$$
W_{23}=U_{23}=k \frac{q_{2} q_{3}}{d}
$$

Potential Energy

- Total potential energy is the scalar sum

$$
U=U_{12}+U_{13}+U_{23}
$$

$$
q_{1}=+q, \quad q_{2}=-4 q, \quad q_{3}=+2 q
$$

$$
U=k\left(\frac{(+q)(-4 q)}{d}+\frac{(+q)(+2 q)}{d}+\frac{(-4 q)(+2 q)}{d}\right)=-k \frac{10 q^{2}}{d}
$$

Electric Field (Fig. 25-15)

- How do we calculate E from V ?
- Component of E in direction of $d s$

$$
E_{s}=-\frac{\partial V}{\partial s}
$$

- Component of E in any direction is negative rate of change of V with
 distance in that direction

Electric Field

- Take s axis to be x, y, or z axes

$$
E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z}
$$

- If E is uniform and s is \perp to equipotential surface

$$
E=-\frac{\Delta V}{\Delta s}
$$

Electric Field (Checkpoint \#6)

- 3 pairs of parallel plates with same separation and V of each plate. E field is uniform between plates and \perp to the plates.

- A) Rank (greatest first) magnitude of E between the plates

Electric Field (Checkpoint \#6)

 (1)

$$
E=-\frac{\Delta V}{\Delta s}
$$

$$
E_{1}=\frac{200}{d} \quad E_{2}=\frac{220}{d} \quad E_{3}=\frac{200}{d}
$$

$$
2, \text { then } 1 \& 3
$$

Electric Field (Checkpoint \#6)

- B) For which pair does E point to the right

(1)

(2)

(3)
- C) If an electron is released midway between plates in (3) what does it do?

Accelerate to the left

Electric Potential for Conductors

- Using what we know about conductors
- $E=0$ inside
- All excess charge is on surface
- All points of a conductor - whether inside or on the surface - are at the same potential
- A conductor is an equipotential

Electric Potential for Conductors (Fig. 25-18)

Electric Potential (Checkpoint \#3)

- An electron moves along 5 different paths between parallel equipotential surfaces
- a) What is the direction of the E associated with the surfaces?

- Positive potentials which decrease going to the right.

Electric Potential (Checkpoint \#3)

- c) Rank the paths by amount of work we do (greatest first).

$$
\begin{gathered}
W^{*}=-W=q \Delta V \\
W^{*}=q\left(V_{f}-V_{i}\right)
\end{gathered}
$$

- Electron gives $W_{\text {Path-1 }}^{*}=-q(70-80)=+10 q$

3, then $1 \& 2 \& 5$, last 4

